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Abstract: The thrombin-binding aptamer (15-TBA) is a 15-mer DNA oligonucleotide with
sequence d(GGTTGGTGTGGTTGG). 15-TBA folds into a quadruplex DNA (G-DNA) structure
with two planar G-quartets connected by three single-stranded loops. The arrangement of
the 15-TBA-thrombin complex is unclear, particularly with respect to the precise 15-TBA
residues that interact with the thrombin structure. Our present understanding suggests either
the 15-TBA single stranded loops containing sequential thymidines (TT) or alternatively a
single-stranded loop, containing a guanine flanked by 2 thymidines (TGT), physically
associates with thrombin protein. In the present study, the explicit solvent molecular dynamics
(MD) simulation method was utilized to further analyze the 15-TBA-thrombin three-
dimensional structure. Functional annotation of the loop residues was made with long
simulations in the parmbscO force field. In total, the elapsed time of simulations carried out
in this study exceeds 12 microseconds, substantially surpassing previous G-DNA simulation
reports. Our simulations suggest that the TGT-loop function is to stabilize the structure of
the aptamer, while the TT-loops participate in direct binding to thrombin. The findings of the
present report advance our understanding of the molecular structure of the 15-TBA-thrombin
structure further enabling the construction of biosensors for aptamer bases and the
development of anticoagulant agents.
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Figure 1. Schematic representation of 15-TBA. Left: NMR-based model. Right: X-ray-based model. Two G-quartets, upper
(G1, G6, G10, G15) and lower (G2, G5, G11, G14), form G-quadruplex. The remaining nucleotides form three lateral loops, one
TGT and two TT. An approximate 2-fold axis of symmetry relates the two halves of the G-quadruplex, resulting in two symmetric
wide grooves (blue) and two symmetric narrow grooves (red). The 15-TBA models differ in chain direction and in loop topology.
In the NMR-based model, two nucleic bases from the TGT-loop, G8 and T9, are stacked with the upper G-quartet. Stacking
nucleotides from the TGT-loop are shown by gray tetragons. There are T4-T13 pair interactions between the TT-loops. In the
X-ray-based model, only the G8 base is stacked with the upper G-quartet with no interactions between the TT-loops.

Introduction

Aptamers are synthetic oligonucleotides that specifically bind
with high affinity a wide range targets, from small molecules
to whole cells."* Aptamers have been developed through
the use of Systematic Evolution of Ligands by Exponential
Enrichment (SELEX).? Among the first successful SELEX
targets was the serine protease thrombin, which plays a key
role in blood coagulation cascade.* Thrombin is a globular
protein with two positively charged substrate (ligand) binding
domains positioned on opposite sides of the protein surface.’
These substrate binding domains are termed fibrinogen-
binding site (exosite I) and heparin-binding site (exosite II)
(Supporting Information, Figure S1). The most widely
studied thrombin-binding DNA aptamer is the 15-mer
oligonucleotide with sequence d(GGTTGGTGTGGTTGG)
(15-TBA).°"'° 15-TBA forms secondary structure consisting
of two planar G-quartets, one over another (G-quadruplex
or G-stem), connected by three intervening lateral loops. Two
of these loops consist of a pair of thymidine bases (TT),
while the third loop consists of two thymidines flanking a
central guanine base (TGT) (Figure 1).

Despite numerous reports on the structure of 15-TBA, the
precise structure and points of interaction with thrombin
remain poorly resolved. Both NMR® ™ and X-ray'? structures
have been reported for 15-TBA. The respective models are
mutually inconsistent however, differing both in chain
direction and loop geometry. The NMR resolved structure
is widely favored over the X-ray structure. Indeed, the NMR
structure is in better agreement with the raw X-ray data
because of the R-factor and real space correlation coef-
ficient."' The NMR-based and X-ray-based 15-TBA models
differ with respect to which bases associate directly with
thrombin. In the NMR-based model, 15-TBA binds the
exosite-I site of thrombin through the TT-loops. Alterna-
tively, the X-ray resolved model suggests that it is the TGT-
loop associating directly with exosite-1.” Mutational analysis
of 15-TBA demonstrates that modification of the TT-loops

*To whom correspondence should be addressed. E-mail:
r.reshetnikov @ gmail.com.

diminishes thrombin binding.'*'* However, modification of
the TGT-loop sequence of 15-TBA adversely affects throm-
bin inhibition activity.'* The stoichiometry of the thrombin-
aptamer complex also remains unclear. Bock* and Tasset'?
with colleagues have assumed 1:1 stoichiometry of the
aptamer-thrombin complex. In contrast, crystallographic data
from Padmanabhan et al.'"® suggest that 15-TBA can also
interact with exosite-II of a symmetry-related molecule of
neighboring thrombin. The crystallographic data is consistent
with the isothermal titration calorimetry (ITC) results
reported by Pagano et al.,'® which accordingly demonstrate
2:1 stoichiometry for the thrombin-aptamer complex.

Molecular dynamics simulation (MD) is a valuable tool for
investigating G-quadruplex-containing structures.'’~>* Current
force fields, such as the parm99°*** version of the Cornell et
al. force field,”> can be readily used to provide descriptions of
G-stem structures.'”'® In contrast, diagonal and propeller loops
of G-quadruplex structures have previously been difficult targets
in molecular modeling approaches.'”~ ' In 2007, the parmb-
sc0 version of the nucleic acids force field was released.?®
The parmbscO has since been used to describe correctly a
wide range of canonical and noncanonical nucleic acid
structures.”®?” The parmbsc0 version enabled a dramatically
improved description of B-DNA structure (which was
unstable in longer simulations with earlier versions of the
Cornell et al. force field). ParmbscO also improves the
description of single stranded DNA loop structures (such as
those of G-DNA). Albeit, there remain limitations with
respect to the capacity of the parmbscO force field to yield
complete loop descriptions.'®

Two previously published studies have applied short MD
simulations to 15-TBA. Pagano et al.'® reported that MD
simulations of 15-TBA and its derivatives produce stable 5
ns-long trajectories in the parm98 force field. Importantly,
the resulting average structure agrees well with the published,
NMR-based structure that is the starting model for MD. The
lateral loops of 15-TBA are represented well in the parm98
force field though the short simulation time scale precludes
definitive conclusions. In a simulation published by Jayapal
et al.,”® predistorted 15-TBA recovers a structure similar to
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the initial 15-TBA structure during 2 ns of MD in an OPLS-
AA force field using entries for nucleic acids added by
Golovin and Polyakov.29 The 2 ns simulations, however,
provide only limited insights.

The determination of function for each nucleotide of 15-
TBA will resolve many of the aforementioned disparities
among published reports. In the present study, we provide
functional annotation of 15-TBA residues resulting from the
use of long MD simulations. We evaluated the viability of
a variety of G-quadruplex-containing structures including
G-DNA stems as well as complexes of 15-TBA with
thrombin. Herein, we report the use of two force fields to
resolve these structures, parm99 and parmbsc(, with simula-
tion times from 600 to 900 ns in individual runs. The
combined data from these MD simulations exceeds 12 us
surpassing the duration of any currently published simula-
tions of G-DNA structure.

Data from this study suggest that the NMR-based con-
formation is the only viable 15-TBA structure, either in its
free state or in complex with thrombin. These data further
suggest that the X-ray resolved conformation is unstable. MD
simulations of loop-free two-quartet G-stem, 15-TBA in a
free state, and 15-TBA complexed with thrombin show that
the TT-loops substantially influence the twist of the G-stem
(as compared to simulation with loop-free stem). Interest-
ingly, subsequent binding of thrombin reduces the structural
strain on the stem, clearly suggesting a mutual adaptation
of the TT-loops, the stem, and the protein. These data further
suggest that the principle function of the TGT-loop is to
stabilize the G-stem.

Materials and Methods

Computer Modeling. The X-ray-based structure of 15-
TBA was taken from the structure of the complex between
thrombin and the aptamer, PDB ID 1hut.'” The NMR-based
structure of 15-TBA was taken from PDB entry 148d, eighth
frame.® The structure of the four-stranded stem consisting
of two G-quartets was obtained from the NMR-based
structure by removing loop residues. We have also studied
NMR and X-ray models of 15-TBA with modified confor-
mations of the TGT-loop named TG(—T), T(—GT), and
TG(+T). Here, signs “—” or “+” denote residues whose
position was changed to either disrupt (—) or establish (+)
base stacking with the upper G-quartet. These models were
obtained from the initial conformations by rotating the G8
and T9 locations around dihedral angles y, ¢, and y using
the Pymol, version 1.1, software program.>’ The energy
minimization procedure, with the quasi-Newtonian limited
memory Broyden—Fletcher—Goldfarb—Shanno (BFGS) al-
gorithm,?' was applied for modified conformations to remove
strain. For simulations of thrombin-aptamer complexes (PDB
ID of NMR-based model 1hao,’ X-ray-based model lhutlo),
Asp, Glu, and His residues of thrombin were protonated
according to the determination by Ahmed et al.*> Models of
1:2 complexes of 15-TBA with thrombin were obtained from
models of the 1:1 complexes (PDB IDs lhao, lhut) by
generating the packing interactions within 4 A from the
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models in the Pymol, version 1.1, software program. The
thrombin molecule interacting with the aptamer of the initial
model through its exosite-Il was then used as a second
protein in the 1:2 complex (Supporting Information, Figure
S2).

Molecular Dynamics Simulation. The GROMACS 4.0
software package®** was used for simulation and analysis
of MD trajectories using the AMBER-99¢ and parmbsc02°
force fields. The AMBER-99¢ force field is an improved
version of the parm99% force field with reconsidered ¢
torsion potential, developed and adapted to GROMACS
by Sorin and Pande.*® The parmbsc0*® force field was
ported onto GROMACS by us through a modification of
the AMBER-99SB*® force field entries for nucleic acids.
Explicit solvent simulations were performed at 7 = 300
K with a time constant for coupling of 0.1 ps under the
control of a velocity rescaling thermostat,?” isotropic
constant-pressure boundary conditions under the control
of the Berendsen algorithm of pressure coupling®® with a
time constant of 5 ps and application of the particle mesh
Ewald method for electrostatic interactions (PME)*® with
grid spacing of 0.178 nm and interpolation order 6. A
triclinic box of TIP4P*® water molecules was added around
the DNA to a depth of 15 A on each side of the solute.
Negative charges were neutralized with the addition of
sodium cations and positive charges by chloride ions.
Additional NaCl was added to a final concentration of 0.1
M to protein-containing systems. In each of the simula-
tions, there were two temperature coupling groups, the
first consisting of DNA with K" ion and the second
consisting of water with Na*t and C1™ ions. Protein atoms,
when present, were added to the first group. The time step
for integration in all simulations was 3 fs. Coordinates
were written to output a trajectory file every 6 ps. Data
extraction from the trajectory file for analysis was made
with a time step of 150 ps. Stabilization of DNA models,
except of the specially stipulated simulations, was made
by placing of potassium cation in the geometrical center
of the G-quadruplex stem, coordinates of the center were
calculated as an arithmetic mean value from O6 atoms
positions of the quadruplex stem guanines. We used
standard AMBER potassium (radius 0.2658 A and well
depth 0.00137 kJ/mol), sodium (radius 0.1868 A, well de-
pth 0.01589 kJ/mol) and chloride (radius 0.2470 A, well
depth 0.41840 kJ/mol) parameters. Sodium and chloride
ions were added to the systems by replacing water
molecules at random positions with minimal distance
between ions equal to 6 A. All simulations were done on
a “Chebyshev” supercomputer provided by SRCC of
Moscow State University. Information about run times and
parallelization of the simulations on the supercomputer
is provided in Supporting Information (Figure S3). The
simulations parameters are provided in Table 1. Analysis
of the trajectories was also performed using the GRO-
MACS 4.0 software package. Hydrogen bonds were
treated as existing if their lifetime was greater than 50%
of the trajectory length. H-bonds were counted for
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Table 1. Simulation Parameters
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quantity of atoms

solute® force field trajectory length (ns) DNA  protein water Na* K" CI-
G-stem parmbscO 700 260 0 12516 3 1 0
G-stem without ion in the center parmbscO 10 260 0 12516 4 0 0
X-ray 15-TBA parm99 900 488 0 22516 13 1 0
X-ray 15-TBA parmbscO 900 488 0 19240 13 1 0
NMR 15-TBA parm99 900 488 0 22524 13 1 0
NMR 15-TBA parmbscO 900 488 0 22532 13 1 0
NMR 15-TBA with Na™ in the center parmbscO 900 488 0 22532 14 0 0
NMR 15-TBA without ion in the center  parmbscO 900 488 0 22528 14 0 0

modified TGT conformations
TG(+T) X-ray 15-TBA? parmbscO 900 488 0 18688 13 1 0
TG(—T) NMR 15-TBA® parmbscO 900 488 0 18312 13 1 0
TG(—T) NMR®9 15-TBA?¢ parmbscO 900 488 0 18968 13 1 0
T(—GT) NMR®% 15-TBA®° parmbscO 900 488 0 20532 13 1 0
complexes with thrombin

X-ray thrombin-aptamer complex parmbscO+parm99SB 600 488 46579 104964 49 1 45
NMR thrombin-aptamer complex parmbscO-+parm99SB 600 488 46589 105104 48 1 45
1:2 X-ray aptamer-thrombin complex parmbscO+parm99SB 600 488 9314 155404 71 1 78
1:2 NMR aptamer-thrombin complex parmbscO+parm99SB 600 488 9316 155732 71 1 78

20ne K" ion in the central cavity of the G-stem if not specified otherwise. ” See the text for explanation of the abbreviation. ¢ NMR®d
indicates that the starting 15-TBA structure is based on preceding MD simulation of the NMR-based structure. The last 100 ns of the 900 ns
simulation were used to create the averaged structure which then was manipulated to arrive at the TG(—T) or T(—GT) arrangement.
9 Thrombin molecules in 1Thao and 1hut structures differ from each other in aminoacid sequence.

donor—acceptor distances shorter than 3.5 A with an
acceptor—donor-hydrogen angle cutoff of 30°.

Results

Comparison of the NMR-Based and X-ray-Based
Models of Free 15-TBA. The relative stability of the
alternative models was determined with 900 ns MD simula-
tion runs in both parm99 and parmbscO force fields. In this
simulation, the X-ray model was treated as a potentially
correct conformation of free 15-TBA. The X-ray resolved
model completely lost its G-quartets in both force fields
however. In either force field, destruction of the G-quadru-
plex began with the formation of stacking interactions
between T4 and T13 under the G-stem with consequent
disruption of the lower G-quartet planarity. In the parm99
force field, the structure maintained characteristics of a
G-quadruplex structure until reaching 170 ns of MD trajec-
tory. In the case of the parmbscO force field, the G-
quadruplex collapsed during the first 10 ns (Supporting
Information, Figure S4). In sharp contrast the NMR-based
structure remained topologically similar to that of the initial
structure in both force fields with the exception of some
rearrangement of the T-T interactions below the G-stem. In
the parmbscO force field, T4-T13 hydrogen bonding interac-
tions switched to T4-T12 and T3-T13 interactions, both under
the lower G-quartet of the stem. In the parm99 force field,
T4-T13 interactions switched to T4-T'12, while T13 remained
under the lower G-quartet, T3 remained exposed to solution
(Figure 2).

Why is the NMR-Based Structure Stable while the
X-ray-Based Structure Is Not? The X-ray resolved model
of 15-TBA is presumed incorrect. Therefore, the instability
of this model in our simulations is not surprising. However,
the collapse of the entire X-ray structure that we observed
is of interest. The observed instability in either force field

suggests that this 15-TBA arrangement is absolutely unstable
at the level of a single molecule, a conclusion that can not
be directly derived from the experimental data. Because this
collapse did not occur in the case of the NMR-based model,
we have concluded not only that the NMR-based model is a
better candidate structure, but also that the X-ray model is
intrinsically not viable at all. The stability of the NMR
structure in our exceptionally long simulations indicates
reasonable performance in these force fields. Further, the long
simulations used in these studies enable us to better
understand the forces and factors that shape the 15-TBA
molecule relative to available experimental data.

We have specifically attempted to understand the roles of
the stem, the loops and the stem-loop mutual influence. The
main structural element of 15-TBA is the G-stem, consisting
of two G-quartets. In the NMR resolved model, this stem is
shielded from water by G8 and T9 above and by the T4—T13
pair below. In the X-ray resolved structure, the stem is
shielded only by G8 above and two thymidines that do not
interact with each other below. Taken together, there are four
structural features that likely influence the stability of the
G-stem: the T4—T13 pair under the G-stem, the G8 and T9
bases above the G-stem and a cation residing between the
G-quartets. The NMR-based structure incorporates each of
these features. The X-ray-based structure, however, has only
the T9 base above the G-stem and a cation situated between
the G-quartets. The “minimal” two-quartet stem is itself of
interest. While stability of the four-quartet stem has been
intensely studied by simulations,*' the two quartet stem likely
possesses a substantially different balance of stabilizing
forces. Table 2 summarizes simulations carried out to
estimate the relative influence of each of the a-fore-mentioned
stabilizing factors.
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Figure 2. Bottom view of the final MD structure of the NMR-based model of 15-TBA. The structural organization of the TT-
loops of the NMR-based model differs depending on the force field used for simulation. In parm99 (left), the T3 thymidine is
exposed to solution. After rearrangement, the TT-loops in the parm99 force field acquired, at ~200 ns of MD trajectory, the
same geometry as in parmbscO force field simulation (right). However, the structure was further changed to the final state at 820
ns of the simulation. In parmbscO, the four thymidines are stacked with the lower G-quartet (shown in dark gray) forming T3-T13
and T4-T12 pair interactions. This geometry was adopted by loops in the beginning of the simulation and remained unchanged
during the entire 900 ns of MD trajectory. Note that the loops are less accurately described by the force fields compared to
stems and the results may be force field dependent.’® Further, the loops may sample multiple conformations so that long
simulations may not be statistically converged.

Table 2. Simulations Carried Out to Test the Importance of Specific Factors That May Contribute to the Stability of 15-TBA

system what was estimated result

four-stranded G-stem consisting of two
G-quartets with K* ion between the
G-quartets

the influence of the loops on the G-stem
stability

the G-stem was stable during all 700 ns of
simulation

the G-stem was disrupted during the first ns
of simulation

four-stranded G-stem without stabilizing
cation between the G-quartets?

NMR 15-TBA model with substitution of
stabilizing K* ion to Na*

NMR-based 15-TBA model without
stabilizing cation between the G-quartets®

importance of stabilizing cation for the
G-stem viability

the influence of different cation parameters
on the 15-TBA behavior and geometry

no significant difference between behavior of
Na*- or K*-stabilized NMR structures

importance of stabilizing ion for the 15-TBA
viability

the model successfully survived, despite
fluctuation, until 72 ns of the simulation
when bulk Na™ cation penetrated the
center of the G-stem from the bottom
through the pore between TT loops (see
Figures 2 and 3), fully stabilizing the
molecule

NMR-based 15-TBA model with T9 base
reoriented away from stacking with the
upper G-quartet (TG(-T) NMR)

X-ray TBA model with T9 base reoriented to  would the X-ray model having additional T9
establish stacking with the upper G-quartet in stacking with the upper G-quartet be
(TG(+T) X-ray) viable

would the NMR model having only G8 in
stacking with the upper G-quartet be viable

the G-quadruplex of the model collapsed
with loss of G-quartets, despite of T4-T13
pair in initial structure

the model survived until 789 ns of
simulation. Than T4 and T13 formed
stacking interactions with each other, which
disturbed planarity of the lower G-quartet
and resulted in the collapse of the model

ZThat is, there was no ion initially in the channel, while there were obviously ions present in the bulk solvent enabling the stem to
capture ions.*?

Complexes between Thrombin and 15-TBA.

1:1 Complexes. The X-ray-based conformation of 15-TBA
simulated above was derived from the structure of the
thrombin-aptamer complex (PDB ID lhut). It is possible that
the protein may have influenced the starting structure and
simulation behavior of the oligonucleotide in this case. Thus,
the dynamic behavior of the NMR-based and X-ray-based
models of the thrombin-aptamer complex was tested with
600 ns of MD in the parmbscO force field. In the initial
structure of the X-ray model of the thrombin-aptamer
complex, 15-TBA is anchored on thrombin through the TGT-

loop with the TT-loops exposed to solution. The H-bond
donor residues of thrombin formed H-bonds not only with
the anchored TGT-loop, but also with the T3 nucleotide from
the TT-loops. Simulations using this conformation resulted
in collapse of the 15-TBA structure with subsequent loss of
the G-quartets. The map of hydrogen bonds between the
protein and aptamer changed dramatically. There were only
17% of the initially formed H-bonds remaining during
simulation (Table 3).

In the initial structure of the NMR-based complex, 15-
TBA is anchored to thrombin through the TT-loops with its
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Figure 3. Travel of the Na™ ion inside the aptamer in the
simulation of 15-TBA without stabilizing cation between the
G-quartets. This figure represents a period of MD simulation
between 60 and 80 ns. The cation (black dots, starting from
the left), moving along the phosphodiester backbone of the
aptamer, penetrated the interior of 15-TBA between the TT-
loops. The Na* cation then passed into the G-quadruplex
through the lower G-quartet and subsequently remained
between the G-quartets for the duration of the simulation. The
phosphate atoms of DNA backbone are shown by gray
spheres.

top exposed to solution. The resulting MD structure agrees
well with the initial structure, with the exception of the
orientation of T7 (Figure 4).

The mapping of hydrogen bonds between thrombin and
the aptamer reveals much smaller changes of H-bonding
pattern than in the simulation using the X-ray-based complex
(Table 4). Thirty % of the initially formed H-bonds from
the NMR-based structure remained during MD simulation.
T3, which is not listed in Table 4, also interacts with
thrombin through stacking interactions with Tyr76. Note that
the initial structure of the NMR complex is a model.’
Consequently, loss of some H-bonds is not surprising as they
are not based directly on experimentally derived measure-
ment. Importantly, the simulation easily finds alternative
H-bonds with no large shift in the overall structure.

Table 3. H-Bonds Map of the X-ray Complex?®

Reshetnikov et al.
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Figure 4. Dynamic behavior of NMR-based 15-TBA in 1:1
complex with thrombin. Snapshots of the aptamer structure
are placed at corresponding moments of the trajectory on the
rmsd graph. The initial structure of 15-TBA as part of the
complex was taken as the reference structure for rmsd
calculation, which was made for all atoms of the aptamer. The
shift of the rmsd value at 400 ns is related to rearrangement
of the TGT-loop; T7 found a new position in stacking with the
upper G-quartet.

1:2 Complexes. MD simulation of aptamer-thrombin
complexes with 1:2 stoichiometry resulted in only minor
changes from the initial models, especially in the case of
the NMR-based 15-TBA model. Denoting the thrombin
protein from the structure of the aptamer-thrombin complex
with 1:1 stoichiometry as thrombin A, and a symmetry-
related protein molecule from the neighboring crystal lattice
cell as thrombin B, the NMR model of 15-TBA interacts
with exosite-I of thrombin A through its TT-loops and with
exosite-Il of thrombin B through its TGT-loop. These
interactions remain unchanged through 600 ns of MD
trajectory. T7, which was unbound in the 1:1 complex
simulations, interacted with thrombin B. G8 and T9
perfectly shielded the upper G-quartet of the G-stem from
charged amino acids and H-bond donors from exosite-1I
of thrombin B.

initial model dynamical model®

donor hydrogen acceptor donor hydrogen acceptor
N3 (T9) H3 (T9) OH (Tyr117) N3 (T7) H3 (T7) OH (Tyr117)
N (1le79) H (lle79) O1P (T9) N3 (T3) H3 (T3) OG (Ser72)
N (Asn78) H (Asn78) O1P (T9) ND2 (Asn78) HD22 (Asn78) 03 (T7)
NH2 (Arg77A) HH22 (Arg77A) 04’ (G10) ND2 (Asn78) HD22 (Asn78) O2P (G8)
NH1 (Arg77A) HH12 (Arg77A) 04’ (G10) N (Asn78) H (Asn78) O2P (G8)
N (Arg77A) H (Arg77A) 03’ (G8) N (Tyr76) H (Tyr76) 06 (G8)
NH2 (Arg75) HH22 (Arg75) N7 (G1) NH2 (Arg75) HH22 (Arg75) O1P (G8)
NH2 (Arg75) HH22 (Arg75) O1P (G8) NH1 (Arg75) HH12 (Arg75) O1P (G8)
NH1 (Arg75) HH12 (Arg75) O1P (G8) N (Arg75) H (Arg75) 04 (T3)
NE (Arg75) HE (Arg75) N9 (G1) OGT1 (Thr74) HG1 (Thr74) 03 (G1)
NE (Arg75) HE (Arg75) N7 (G1) N (Thr74) H (Thr74) 04 (T3)
ND1 (Hys71) HD1 (Hys71) O2P (G8)

2 H-bonds that were kept during simulation are marked by bold; new H-bonds are marked by italic. ? Criterion of H-bond existence in MD

are described in Materials and Methods section.
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Table 4. H-Bond Map of the NMR Complex?

J. Chem. Theory Comput., Vol. 6, No. 10, 2010 3009

initial model dynamical model®

donor hydrogen acceptor donor hydrogen acceptor
N3 (T12) H3 (T12) OE2 (Glu77) ND2 (Asn 78) HD22 03 (T13)
N3 (T12) H3 (T12) O (Glu77) NH2 (Arg 77A) HH22 O1P (G14)
OG (Ser153) HG (Ser153) 04 (T7) NH2 (Arg 77A) HH22 o4 (G14)
OH (Tyr117) HH (Tyr117) O1P (T13) NH1 (Arg 77A) HH12 O (T13)
N (Asn78) H (Asn78) O (T13) NH1 (Arg 77A) HH12 05 (G14)
NE (Arg77A) HE (Arg77A) O1P (G14) NH1 (Arg 77A) HH12 o4 (G14)
N (Tyr76) H (Tyr76) 04’ (T4) N (Tyr 76) H 04’ (T4)
NH2 (Arg75) HH22 (Arg75) O (T4) NH2 (Arg 75) HH22 04 (T13)
NH1 (Arg75) HH12 (Arg75) 04 (T13) NH1 (Arg 75) HH12 O (T4)
NE (Arg75) HE (Arg75) O (T4) NH1 (Arg 75) HH12 04 (T13)

@ H-bonds that were kept during simulation are marked by bold; new H-bonds are marked by italic. ? Criterion of H-bond existence in MD

are described in Materials and Methods section.

Figure 5. Definition of the twist angle between the two
quartets.

In a similar simulation, the X-ray-based model of 15-TBA
interacts with exosite-I of thrombin A through its TGT-loop
and with exosite-II of thrombin B through its TT-loops. The
G-quartet planarity of the aptamer was disrupted early in
the MD trajectory. This disturbance did not however result
in overall unfolding of the 15-TBA structure. Multiple
contacts of the TT-loops with residues of exosite-II of
thrombin B anchored this pole of the aptamer structure
preventing structural collapse on the observed simulation
time scale (Supporting Information, Figure S5).

Structural Dynamics of the G-Stem. Twist Values
Indicate Structural Strain. The twist between two adjacent
G-tetrads was chosen as an important structural element of
the stem. Twist is represented by the angle between two
vectors using C1” atoms of adjacent guanines as the initial
and terminal points (Figure 5). We compared the twist angle
values and their fluctuations in simulations of free 15-TBA,
15-TBA-protein complexes, and two-quartet stem simulated
without the loops (loop-free system). We assumed that the
loop-free structure reflects the ideal twist between the two
quartets when the stem is not perturbed by other forces.

There are large differences in twist values between the
individual structures and in the range of values sampled
reflecting the flexibility of the stem (Figure 6). Additionally,
there were substantial differences in twist values measured
across different grooves. When taking the loop-free stem as
a reference, the differences seen in other simulations highlight
the influence of the loops on the stem as well as that of

protein binding. It is interesting to note that the range of
twist values in the deposited 15-TBA NMR-based structure
(12 structures, horizontal blue lines in Figure 6) is quite
different from values sampled in the simulation of 15-TBA
(black time course). This potentially reflects the effect of
the simulation force field, which could shift the optimal twist
value relative to experimental structures, as is known to be
the case for B-DNA simulations. It is important to note that
even if the force field is systematically shifting the absolute
twist values the simulations would still properly reflect the
relative twist values of different structures. However, the
twist range in the NMR-based structure could also be affected
by the NMR structure refinement protocol, which consists
of a simulated annealing run from 1000 to 75 K in 1000
cycles, followed by energy minimization in the X-PLOR 3.1
system. Note also that the NMR-based structure has sub-
stantial deformation (nonplanarity) of the quartets which may
indicate some inherent conflicts in the NMR-based data
(Figure 7 left), while the MD simulation yields regular
quartets.

The 15-TBA loops influence the twist value by substan-
tially restricting the structure and flexibility of the stem. As
a result, there is a dramatic reduction in the twist value as
well as a reduction in its variability (cf. black and gray lines
in Figure 6). Indeed, there is nearly no overlap in twist values
sampled in simulations of the loop-free stem and complete
15-TBA. Considering that a 100 ns simulation can, assuming
Arrhenius kinetics, sample events differing by as much as
7—8 kcal/mol from the free energy minimum, the influence
of the loops is significant. Importantly, complex formation
of 15-TBA with thrombin mitigates the influence of the loops
on the twist value.

Thrombin’s influence on the twist angles corresponding
to the narrow grooves of 15-TBA (Figure 6A and C, black
and brown lines) is slight. Deviations of the twist angle, both
in free 15-TBA and 15-TBA complexed with thrombin, is
similar when compared to the loop-free G-stem. Thrombin,
however, significantly influences the twist angles corre-
sponding to the wide grooves of 15-TBA (Figure 6, B and
D). 15-TBA, complexed with thrombin, has a twist angle
that is much closer to that of the loop-free G-stem than to
that of the free 15-TBA. In the 15-TBA-thrombin complex,
thrombin compensates for the influence of the loops on the
stem structure at the wide groove, while there is no similar
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Figure 6. Timed development of the twist angle between the quartets. Twist angle was monitored in different simulations for
different grooves, as indicated by the inset structures. Data were smoothed with spline interpolation. Gray: The twist between
the two quartets of the four-stranded G-stem without the loops. Black: NMR-based model of 15-TBA in free state. Brown: NMR
model in 1:1 complex with thrombin. The two horizontal blue lines demarcate the range of twist values seen in the 12 structures
representing the NMR-based model of 15-TBA in PDB entry 148d.

Figure 7. NMR model of 15-TBA before and after MD in
parmpscO force field. Left: Structure of NMR-based model of
15-TBA from PDB entry 148d. Right: Final MD structure of
NMR-based model of 15-TBA. Thymidines from the TT-loops
are outlined.

compensation in the narrow groove. The only structural
elements of 15-TBA that could influence the geometry of
the stem at the narrow groove are the TT-loops which display
the greatest rearrangement among the structural elements of
15-TBA during simulations (Figure 7). It seems that the
origin of the strains that led to collapse of the X-ray-based
15-TBA structure, as well as the modified TG(-T) NMR-
based structure, is the initial geometry of the TT-loops. Two
modified 15-TBA models were simulated to test this pos-
sibility: 1) the resulting MD NMR-based structure with T9
subsequently reoriented away from stacking with the upper
G-quartet (TG(-T) NMR®?) and 2) the resulting MD NMR-
based structure with T9 and G8 bases reoriented away from
stacking with the upper G-quartet (T(-GT) NMR®Y). In the
case of both starting structures, the TT-loops are in a

conformation that is equilibrated (by the preceding simula-
tions) for minimal negative influence on the G-stem. Both
structures successfully survived simulation until the reori-
ented bases returned to form stacking interactions with the
upper G-quartet.

Discussion

The thrombin-binding aptamer (15-TBA) is an intriguing
example of a G-DNA containing structure. In addition to its
intrinsic affinity for thrombin and potential medicinal value,
15-TBA also represents an important system to study the
basic physical chemistry of G-DNA folding and the stabiliz-
ing balance of forces. 15-TBA contains the minimum number
of G-quartets (just two), raising an interesting question with
respect to how is the 15-TBA structure is stabilized? The
stability of G-DNA originates primarily from cation-
stabilized G-quartet stems. However, the ions within the stem
exchange with the bulk solvent. Since the molecule must be
regularly exposed to periods when no ion is left in its single
ion-binding cavity in the stem, formation of a stable stem
with only two quartets is somewhat surprising.

15-TBA contains three short single-stranded loops that
maintain proximity between the G-stretches and are essential
for thrombin binding. Besides their obvious entropic role (i.e,
the difference between forming the stem from either a single
strand or from four separate strands), these loops also may
exert a direct influence on the stem that may be either
stabilizing or destabilizing. Destabilizing effects can arise
when the length of the loop is in conflict with the optimal
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stem structure while stabilizing effects could be caused by
molecular interactions such as base stacking.

Complicating our understanding of 15-TBA structure,
conflicting reports based upon X-ray data for the thrombin-
aptamer complex and NMR data for free aptamer have been
reported. In these disparate reports, there resides a discrep-
ancy in chain orientation. There is also uncertainty with
respect to the exact coordination of potassium ions. Marathias
and Bolton® suggested that two potassium ions bind 15-TBA,
while several studies indicate that a single potassium ion
binds 15-TBA.**~*° The putative 2:1 binding stoichiometry
may represent an additional stabilizing influence for the two-
quartet stem during ion exchange with bulk. The MD
simulation technique is a well established tool for the study
of monovalent ion binding to nucleic acids, including
G-DNA. However, there are inherent limitations in the use
of MD for this purpose.'®'® For example, simple pair-
additive force field cannot model polarization of electron
clouds, which adversely affects our ability to describe the
coordination of ions. Because of this limitation, we elected
not to study the detailed difference between the influences
of Na™ and K™ ions on the 15-TBA structure or analyze
exact ion binding patterns, that is, the 2:1 versus 1:1 binding.
Nevertheless, we did not observe any population of 2:1
binding in our simulations.

In principle, a desirable, precise evaluation of the described
interactions could be achieved using combined quantum/
molecular mechanics methods.*®*” These methods however,
are limited in the duration of simulation (dozens of ps) due
to substantial computational demand. Though accurate,
standard gas phase QM computations on small models are
not likely to provide a correct description of the balance of
interactions in G-DNA stems. Despite its limitations, MD
simulation is capable of substantially contributing to our
understanding of the basic role of charge in the 15-TBA
quadruplex channel. In the present study, we focused on the
comparative study of 15-TBA with published chain orienta-
tions, 15-TBA loop-free analogue (two-quartet stem with no
loops), and 15-TBA in complex with thrombin using very
long MD simulations reaching 12 microsecond of simulation
time in total. Our study has two basic parts. We initially
investigated the basic properties of free 15-TBA models. We
then studied 15-TBA-thrombin complexes using essentially
all structural data available in the literature.

The free NMR-based model of 15-TBA is viable in MD
simulations, while the X-ray-based model is not. The reason
for this difference relates to intramolecular interactions that
can either stabilize or disrupt the G-quarduplex structure.
Stabilizing interactions refer to the functions of the TGT-
loop and a cation that resides within the G-stem. However,
the relative importance of these contributions remains
uncertain. The NMR-based model of free 15-TBA was viable
even when simulated initially without a stabilizing cation.
Moreover, the NMR-based model was capable of spontane-
ously capturing a cation from the bulk to achieve full
stabilization. In contrast, the two quartet loop-free stem
simulated initially without a bound ion collapsed im-
mediately. However, the two-quartet, loop-free stem was
stable if the ion was initially placed into its cavity. Taken
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together, these simulations reveal the following stability order
of the structures used in simulations: 15-TBA NMR-based
structure > two quartet stem >15-TBA X-ray-based structure.
These data clearly show that the overall effect of the three
loops is direct energy stabilization of the 15-TBA NMR-
based structure.

When we tried to specifically weaken the structure by
initially shifting T9 from the TGT loop to disrupt its stacking
with the stem, the molecule was destabilized even in the
presence of an internal cation. This observation indicates
(albeit does not prove) a potentially important stabilizing role
for T9. Obviously, the artificial intervention into the starting
structure could introduce undesired destabilization (high-
energy deformation) because of strained topology of the TGT
loop. The simulation might be subsequently unable to repair
such a destabilizing interaction. The dynamics of destabiliza-
tion indicate that the cause of structural collapse is primarily
associated with the conformation of the TT-loops. Once the
T9 is unstacked, the TGT loop is unable to counterbalance
the strain associated with the TT-loops. However, the
electronic part of coordination interactions between the ion
and solute could not be included via the force field model.
Consequently, the description of the ion’s stabilizing role
may be imprecise.

Our simulations indicate that there should be at least two
nucleotides (G8 and T9) stacked with the upper G-quartet
for the molecule’s viability. The only remaining residue from
the TGT-loop that, according to MD, does not take part in
any intramolecular interactions is T7. It seems that this
residue merely functions to extend the length of the loop.
Indeed, Smirnov and Shafer previously reported that three
nucleotides is the optimal length for the central loop.*® This
finding also correlates well with example 11 in the U.S.
patent of Griffin et al.,** in which modified forms of 15-
TBA containing an abasic nucleotide at each position were
synthesized. The only mutant with increased thrombin
clotting time relative to the unmodified form was the
nonbasic T7 substitution (161 s versus 136 s). Each of the
remaining mutants demonstrated decreased thrombin clotting
time about 30—50 s.

We have several lines of evidence to support the desta-
bilizing influence of the TT-loops on the 15-TBA structure
highlighted by the significant effect of the loops on the twist
value of the stem (see below and Figure 6). The loops may
be too short and cause strain within 15-TBA. Interestingly,
in simulations of the 15-TBA NMR-based model, geometries
of the TT-loops are substantially remodeled (Figure 7),
indicating that their starting structures are suboptimal and
relax during simulation. There are two potential explanations
to account for the observed remodeling that we cannot readily
discern. First, the starting NMR-based geometry is not perfect
and the simulation is remodeling to arrive at the correct
structure. Second, the geometry of G-DNA loops can also
be influenced by force field approximations, as demonstrated
in the literature.'® This would mean that the simulation again
increases the stability of the molecule relative to the starting
structure. This improvement, however, would be obtained
within the approximation of the force field. Interestingly,
when we repeated simulation with T9 unstacking using the



3012 J. Chem. Theory Comput., Vol. 6, No. 10, 2010

15-TBA starting structure equilibrated by our 900 ns simula-
tion (i.e., having relaxed TT loops), the molecule did not
collapse as a result of being weakened by shifting of either
T9, or both T9 and G8 from their stacking positions. This
15-TBA starting structure survived until the displaced 15-
TBA bases returned to their initial stacking positions.

The TT-loops also serve a critical function in the 15-TBA
complex with thrombin. The X-ray-based conformation, if
correct, would interact with the protein through its TGT-
loop. Despite multiple contacts of the top region of the
aptamer with exosite-1 that could stabilize the structure of
the oligonucleotide (Table 3), the destabilizing influence of
the TT-loops was of greater magnitude. In contrast, in the
NMR-based model, the TT-loops are in contact with
thrombin, rendering the aptamer stem structure less strained
(as indicated by the twist values) than the free structure
(Figure 6A—D). This observation not only favors the NMR-
based model of the complex but also corresponds with data
showing that thrombin can serve as a molecular chaperone
for 15-TBA in the absence of stabilizing ions.>

MD simulations of aptamer-thrombin complexes with 1:2
stoichiometry demonstrate that these structures are stable and
may exist. The 1:2 complex based on the X-ray model of
15-TBA confirmed the importance of the TT-loops for
thrombin binding. Multiple contacts of the TT-loops with
thrombin exosite II anchored the structure of the aptamer,
preventing disintegration during the 600 ns of MD trajectory.
Tsiang et al. showed that substitution of the thrombin exosite
II residues does not affect inhibition of thrombin activity by
the aptamer®' suggesting that 15-TBA either does not bind
exosite II of thrombin or binding of 15-TBA to exosite II is
not inhibitory. We are examining the later suggestion in
ongoing studies.

The stem in the NMR-based 15-TBA structure is evidently
strained (deformed) by the presence of TT-loops as is
evidenced by the substantial change of the stem twist angle
relative to simulation involving a fully relaxed stem without
loops. However, the effect of the loops can be complex, as
noted above. Data from these simulations are consistent with
the suggestion that the TGT-loop stabilizes the stem while
the TT-loops induce strain in the stem structure. In agreement
with the study of Baldrich and O’Sullivan,”® binding of
thrombin apparently reduces the structural strain exerted by
the TT-loops on the stem. Notably, each of these consider-
ations is based indirectly on the analysis of structural
dynamics. We did not attempt any free energy calculations
as we are unaware of a straightforward procedure to perform
the necessary calculations using contemporary simulation
methods in a reliable manner.

The present study is based on simulations that are 1—2
orders of magnitude longer than those in the preceding
G-DNA simulation studies. Such long simulations give us
considerably more confidence in the validity of the results.
We have seen several changes after extending the individual
simulations beyond 50 ns, so this extension is useful and in
any case brings a substantial improvement in the reliability
of the simulations, at least as far as the sampling is
concerned. Still, we think it would not be appropriate to make
any definitive conclusions about convergence of the results,

Reshetnikov et al.

since even 0.1—1.0 us simulations are short compared to
real conformational changes. Further, for the specific system
studied here we do not have the highest-resolution X-ray
structures available that would be necessary to rigorously
benchmark the simulation data. For the present system,
actually, there has been a literature controversy about
correctness of some of the experimental structures (our long
simulations speak clearly in favor of the NMR structure).

In summary, our simulations suggest the following conclu-
sions. The loops have a stabilizing influence on the 15-TBA
molecule. However, the TT-loops (although they help to keep
the GG-stretches together) have a destabilizing influence on
the stem structure. The TGT-loop, in contrast, appears to be
in all aspects stabilizing. However, the TT-loops mediate
thrombin binding, an interaction that in addition appears to
reduce the conflict between the optimal structure of the stem
and the short TT-loops. The simulations described herein
strongly support the NMR-based model of 15-TBA. The
results provided by this study can aid in the construction of
biosensors. A potential design of such a biosensor based upon
the results of this study would involve the immobilization
of the aptamer through its TGT loop. The exposed TT-loops
would then project into solution to bind thrombin.

Acknowledgment. Computer resources were provided
by the Research Computing Center of Moscow State
University. The supercomputer, “Chebyshev”, was used for
all modeling studies. J.S. was supported by the Grant Agency
of the Academy of Sciences of the Czech Republic grant
TAA400040802, Grant Agency of the Czech Republic grant
203/09/1476, Ministry of Education of the Czech Republic
grant LC06030 and Academy of Sciences of the Czech
Republic, Grants AV0Z50040507 and AV0Z50040702. R.R.
is grateful to Arthur Zalevsky for his help in the preparation
of simulations. This research was also supported by Russian
Foundation for Basic Research Grants 08-04-01244-a and
08-04-01540-a and Ministry of Education and Science of
the Russian Federation Grant 02.512.11.2242.

Supporting Information Available: Representation of
thrombin functional sites, illustration of the creation of the
1:2 complex model, “Chebyshev” supercomputer perfor-
mance characteristics, collapse of the X-ray model in
parmbscO force field with rmsd plot, the X-ray-based model
of 1:2 complex after MD simulation in barmbsc0 force field
and a plot of the radius of gyration of G-quadruplex
structures in several simulations. This information is available
free of charge via the Internet at http://pubs.acs.org/.

References

(1) Nimjee, S. M.; Rusconi, C. P.; Sullenger, B. A. Aptamers:
An emerging class of therapeutics. Annu. Rev. Med. 2005,
56, 555-583.

(2) Shamah, S. M.; Healy, J. M.; Cload, S. T. Complex target
SELEX. Acc. Chem. Res. 2008, 41, 130-138.

(3) Tuerk, C.; Gold, L. Systematic evolution of ligands by
exponential enrichment: RNA ligands to bacteriophage T4
DNA polymerase. Science 1990, 249, 505-510.

(4) Bock, L. C.; Griffin, L. C.; Latham, J. A.; Vermaas, E. H.;
Toole, J. J. Selection of single-stranded DNA molecules that



Structural Annotation of 15-TBA

(&)

(6)

)

(®)

(C))

10)

an

(12)

(13)

(14)

15)

16)

a7

(18)

19)

(20)

bind and inhibit human thrombin. Nature. 1992, 355, 564—
566.

Di Cera, E. Thrombin. Mol. Aspects Med. 2008, 29, 203—
254.

Schultze, P.; Macaya, R. F.; Feigon, J. Three-dimensional
solution structure of the thrombin-binding DNA aptamer
d(GGTTGGTGTGGTTGG). J. Mol. Biol. 1994, 235, 1532—
1547.

Mao, X.; Marky, L. A.; Gmeiner, W. H. NMR structure of
the thrombin-binding DNA aptamer stabilized by Sr**.
J. Biomol. Struct. Dyn. 2004, 22, 25-33.

Marathias, V. M.; Bolton, P. H. Structures of the potassium-
saturated, 2:1, and intermediate, 1:1, forms of a quadruplex
DNA. Nucleic Acids Res. 2000, 28, 1969—-1977.

Padmanabhan, K.; Tulinsky, A. An ambiguous structure of a
DNA 15-mer thrombin complex. Acta Crystallogr. D 1996,
52, 272-282.

Padmanabhan, K.; Padmanabhan, K. P.; Ferrara, J. D.; Sadler,
J. E.; Tulinsky, A. The structure of alpha-thrombin inhibited
by a 15-mer single-stranded DNA aptamer. J. Biol. Chem.
1993, 268, 17651-17654.

Kelly, J. A.; Feigon, J.; Yeates, T. O. Reconciliation of the
X-ray and NMR structures of the thrombin-binding aptamer
d(GGTTGGTGTGGTTGG). J. Mol. Biol. 1996, 256, 417—
422.

Heckel, A.; Mayer, G. Light regulation of aptamer activity:
An anti-thrombin aptamer with caged thymidine nucleobases.
J. Am. Chem. Soc. 2005, 127, 822-823.

Mendelboum Raviv, S.; Horvdth, A.; Aradi, J.; Bagoly, Z.;
Fazakas, F.; Batta, Z.; Muszbek, L.; Harsfalvi, J. 4-Thio-
deoxyuridylate-modified thrombin aptamer and its inhibitory
effect on fibrin clot formation, platelet aggregation and
thrombus growth on subendothelial matrix. J. Thromb.
Haemost. 2008, 6, 1764-1771.

Ikebukuro, K.; Okumura, Y.; Sumikura, K.; Karube, I. A novel
method of screening thrombin-inhibiting DNA aptamers using
an evolution-mimicking algorithm. Nucleic Acids Res. 2005,
33, e108—e108.

Tasset, D. M.; Kubik, M. F.; Steiner, W. Oligonucleotide
inhibitors of human thrombin that bind distinct epitopes. J.
Mol. Biol. 1997, 272, 688-698.

Pagano, B.; Martino, L.; Randazzo, A.; Giancola, C. Stability
and binding properties of a modified thrombin binding
aptamer. Biophys. J. 2008, 94, 562-569.

Fadma, E.; §paékové, N.; §teﬂ, R.; Koca, J.; Cheatham, T. E.;
§poner, J. Molecular dynamics simulations of guanine qua-
druplex loops: advances and force field limitations. Biophys.
J. 2004, 87, 227-242.

gponer, I §paékové, N. Molecular dynamics simulations and
their application to four-stranded DNA. Methods 2007, 43,
278-290.

Fadrna, E.; §paékové, N.; Sarzyiiska, J.; Koca, J.; Orozco,
M.; Cheatham, T. E.; Kulinski, T.; §poner, J. Single stranded
loops of quadruplex DNA as key benchmark for testing
nucleic acids force fields. J. Chem. Theory Comput. 2009,
5, 2514-2530.

Haider, S.; Parkinson, G. N.; Neidle, S. Molecular dynamics
and principal components analysis of human telomeric qua-
druplex multimers. Biophys. J. 2008, 95, 296-311.

2n

(22)

(23)

(24)

(25)

(20)

27

(28)

29

(30)

€1y

(32)

(33)

(34)

(35)

(36)

(37

J. Chem. Theory Comput., Vol. 6, No. 10, 2010 3013

Hazel, P.; Parkinson, G. N.; Neidle, S. Predictive modelling
of topology and loop variations in dimeric DNA quadruplex
structures. Nucleic Acids Res. 2006, 34, 2117-2127.

Cavallari, M.; Calzolari, A.; Garbesi, A.; Di Felice, R. Stability
and migration of metal ions in G4-wires by molecular
dynamics simulations. J. Phys. Chem. B. 2006, 110, 26337—
26348.

Cheatham, T. E.; Cieplak, P.; Kollman, P. A. A modified
version of the Cornell et al. force field with improved sugar
pucker phases and helical repeat. J. Biomol. Struct. Dyn.
1999, 16, 845-862.

Wang, J.; Cieplak, P.; Kollman, P. How well does a restrained
electrostatic potential (RESP) model perform in calculating
conformational energies of organic and biological molecules.
J. Comput. Chem. 2000, 21, 1049-1074.

Cornell, W. D.; Cieplak, P.; Bayly, C. L.; Gould, . R.; Merz,
K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell,
J. W.; Kollman, P. A. A second generation force field for the
simulation of proteins, nucleic acids, and organic molecules.
J. Am. Chem. Soc. 1996, 118, 2309.

Pérez, A.; Marchan, 1.; Svozil, D.; Sponer, J.; Cheatham, T. E.;
Laughton, C. A.; Orozco, M. Refinement of the AMBER force
field for nucleic acids: improving the description of a/y
conformers. Biophys. J. 2007, 92, 3817-3829.

Pérez, A.; Luque, F. J.; Orozco, M. Dynamics of B-DNA on
the microsecond time scale. J. Am. Chem. Soc. 2007, 129,
14739-14745.

Jayapal, P.; Mayer, G.; Heckel, A.; Wennmohs, F. Structure-
activity relationships of a caged thrombin binding DNA
aptamer: Insight gained from molecular dynamics simulation
studies. J. Struct. Biol. 2009, 166, 241-250.

Golovin, A.; Polyakov, N. OPLS-AA/L force field entries for
nucleic acids. http://rnp-group.genebee.msu.su/3d/ff.htm (ac-
cessed Feb 22, 2005).

The PyMOL Molecular Graphics System, version 1.1,
Schrodinger LLC. http://www.schrodinger.com/ (accessed Sep
20, 2010).

Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory
algorithm for bound constrained optimization. STAM J. Sci.
Comput. 1995, 16, 1190.

Ahmed, H. U.; Blakeley, M. P.; Cianci, M.; Cruickshank,
D. W. J.,; Hubbard, J. A.; Helliwell, J. R. The determination
of protonation states in proteins. Acta Crystallogr. D 2007,
63, 906-922.

van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark,
A. E.; Berendsen, H. J. C. GROMACS: Fast, flexible, and
free. J. Comput. Chem. 2005, 26, 1701-1718.

Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E.
GROMACS 4: Algorithms for highly efficient, load-balanced,
and scalable molecular simulation. J. Comput. Chem. 2008,
4, 435-447.

Sorin, E. J.; Pande, V. S. Exploring the helix-coil transition
via all-atom equilibrium ensemble simulations. Biophys. J.
2005, 88, 2472-2493.

Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.;
Simmerling, C. Comparison of multiple Amber force fields
and development of improved protein backbone parameters.
Proteins 2006, 65, 712-725.

Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling
through velocity rescaling. J. Chem. Phys. 2007, 126,
014101—014107.



3014 J. Chem. Theory Comput., Vol. 6, No. 10, 2010

(33)

(39)

(40)

(41)

(42)

43)

(44)

Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;
DiNola, A.; Haak, J. R. Molecular dynamics with coupling
to an external bath. J. Chem. Phys. 1984, 81, 3684-3690.

Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An
N log(N) method for Ewald sums in large systems. J. Chem.
Phys. 1993, 98, 10089-10092.

Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey,
R. W.; Klein, M. L. Comparison of simple potential functions
for simulating liquid water. J. Chem. Phys. 1983, 79, 926—
935.

éteﬂ, R.; Cheatham, T. E.; §paék0vé, N.; Fadma, E.; Berger,
I.; Koca, J.; §poner, J. Formation pathways of a guanine-
quadruplex DNA revealed by molecular dynamics and ther-
modynamic analysis of the substates. Biophys. J. 2003, 85,
1787-1804.

épaékové, N.; Berger, L.; gponer, J. Structural dynamics and
cation interactions of DNA quadruplex molecules containing
mixed guanine/cytosine quartets revealed by large-scale MD
simulations. J. Am. Chem. Soc. 2001, 123, 3295-3307.

Hud, N. V.; Smith, F. W.; Anet, F. A.; Feigon, J. The
selectivity for K* versus Na® in DNA quadruplexes is
dominated by relative free energies of hydration: a thermo-
dynamic analysis by 1H NMR. Biochemistry. 1996, 35,
15383-15390.

Vairamani, M.; Gross, M. L. G-quadruplex formation of
thrombin-binding aptamer detected by electrospray ionization
mass spectrometry. J. Am. Chem. Soc. 2003, 125, 42-43.

(45)

(46)

47

(4%)

(49)

(50)

(61

Reshetnikov et al.

Majhi, P. R.; Qi, J.; Tang, C.; Shafer, R. H. Heat capacity
changes associated with guanine quadruplex formation: an
isothermal titration calorimetry study. Biopolymers. 2008, 89,
302-309.

Car, R.; Parrinello, M. Unified approach for molecular
dynamics and density-functional theory. Phys. Rev. Lett.
1985, 55, 2471-2474.

Eichinger, M.; Tavan, P.; Hutter, J.; Parrinello, M. A hybrid
method for solutes in complex solvents: Density functional
theory combined with empirical force fields. J. Chem. Phys.
1999, 110, 10452-10467.

Smirnov, I.; Shafer, R. H. Effect of loop sequence and size
on DNA aptamer stability. Biochemistry 2000, 39, 1462—
1468.

Griffin, L. C.; Albrecht, G.; Latham, J. A.; Leung, L.;
Vermaas, E.; Toole, J. J. Aptamers specific for biomolecules
and methods of making. U.S. Patent 5756291, May 26, 1998.

Baldrich, E.; O’Sullivan, C. K. Ability of thrombin to act as
molecular chaperone, inducing formation of quadruplex
structure of thrombin-binding aptamer. Anal. Biochem. 2005,
341, 194-197.

Tsiang, M.; Jain, A. K.; Dunn, K. E.; Rojas, M. E.; Leung,
L. L. K.; Gibbs, C. S. Functional mapping of the surface
residues of human thrombin. J. Biol. Chem. 1995, 270,
16854-16863.

CT100253M



J. Chem. Theory Comput. 2010, 6, 3015-3025

" I ‘ Journal of Chemical Theory and Computation

Direct Dynamics Implementation of the Least-Action
Tunneling Transmission Coefficient. Application to the
CH,/CD;H/CD, + CF; Abstraction Reactions

Rubén Meana-Pafieda,” Donald G. Truhlar,* and Antonio Ferndndez-Ramos* "

Department of Physical Chemistry and Center for Research in Biological Chemistry
and Molecular Materials, University of Santiago de Compostela,
15782 Santiago de Compostela, Spain and Department of Chemistry and
Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE,
Minneapolis, Minnesota 55455-0431

Received May 31, 2010

Abstract: We present two new direct dynamics algorithms for calculating transmission
coefficients of polyatomic chemical reactions by the multidimensional least-action tunneling
approximation. The new algorithms are called the interpolated least-action tunneling method
based on one-dimensional interpolation (ILAT1D) and the double interpolated least-action
tunneling (DILAT) method. The DILAT algorithm, which uses a one-dimensional spline under
tension to interpolate both of the effective potentials along the nonadiabatic portions of tunneling
paths and the imaginary action integrals as functions of tunneling energies, was designed for
the calculation of multidimensional LAT transmission coefficients for very large polyatomic
systems. The performance of this algorithm has been tested for the CH4/CD3;H/CD4 + CF3
hydrogen abstraction reactions with encouraging results, i.e., when the fitting is performed using
13 points, the algorithm is about 30 times faster than the full calculation with deviations that are
smaller than 5%. This makes direct dynamics least-action tunneling calculations practical for
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larger systems, higher levels of electron correlation, and/or larger basis sets.

1. Introduction

Hydrogen and proton transfer reactions are among the most
prominent reactive processes in chemistry and biology.'*
These reactions are often dominated by quantum mechanical
tunneling because the hydrogen atom, due to its small mass,
can readily pass through classically forbidden regions of a
potential energy surface (PES). Tunneling effects can be
taken into account by rigorous quantum mechanical meth-
ods,® '3 which are only applicable to systems with a small
number of atoms, or by Wentzel —Kramers—Brillouin (WKB)-
like semiclassical methods,'®"?® which can handle a large
number of atoms. Among the semiclassical methods, varia-
tional transition-state theory with multidimensional tunneling
corrections (VTST/MT)?*~*? is the best validated practical

* Corresponding author. E-mail: qf.ramos@usc.es.
" University of Santiago de Compostela.
* University of Minnesota.

choice for the study of chemical reactions with several atoms
because, on the one hand, it has proved to be very accurate
when compared with quantum mechanical dynamics calcula-
tions*>** and, on the other hand, it needs only semiglobal
information about the PES and in many cases is sensitive to
the PES only near to the minimum-energy path.

The simplest case for VTST is when the transition-state
dividing surface (which is the dynamical bottleneck for
reaction) is located at a saddle point and the quantum effects
on the reaction coordinate are negligible; in such a case, all
the information required for the evaluation of thermal rate
constants can be obtained from the reactants and the
conventional transition state. In this case VIST/MT can be
safely replaced by conventional transition-state theory.**
Unfortunately, this is hardly ever the case for hydrogen
transfer reactions, which, unless they have no barrier, are
usually dominated by tunneling even up to temperatures well
above room temperature, 424345749

10.1021/ct100285a © 2010 American Chemical Society
Published on Web 09/02/2010
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Even when variational effects (i.e., effects due to the
variational transition state not being located at a saddle point)
are negligible, the incorporation of quantum effects in the
VTST/MT treatment of generalized transition states requires
more information about the PES than just reactants and
transition-state properties. Quantum effects are incorporated
differently for the reaction coordinate, which—for overbarrier
processes—is the mode with an imaginary frequency at the
saddle point and for the F — 1 normal modes of bound
motion perpendicular to the reaction coordinate (where F —
1 equals 3N — 7 for nonlinear transition states and 3N — 6
for linear transition states, where N is the number of atoms,
and the reaction coordinate is labeled as mode F). The
thermal rate constant calculated by taking into account only
the quantum effects on the coordinates in which motion is
bound is called quasiclassical, and it is obtained by replacing
the classical vibrational partition functions by quantum
mechanical ones.****° The quantum effects on the reaction
coordinate are taken into account through a transmission
coefficient?! 2344359733 that multiplies the quasiclassical
thermal rate constant. The evaluation of the transmission
coefficient requires the selection of a tunneling path or paths.

As a zeroth approximation, one may assume that the
tunneling path coincides with the minimum-energy path
(MEP) (the union of the steepest-descent paths in isoinertial
coordinates down from the saddle point to reactants and that
down to products).’*>*>3 When zero-point effects are taken
into account for bound motions transverse to the MEP, this
assumption yields the zero-curvature tunneling (ZCT) ap-
proximation.”® The signed distance from the saddle point
along the MEP will be called the reaction coordinate, even
though the dominant dynamical path may be offset from the
MEP. The MEP is tangent to the imaginary frequency normal
mode at the saddle point, so this definition coincides with
defining the reaction coordinate in the vicinity of the saddle
point as the distance along that mode.

It has been shown that the ZCT path, i.e., the MEP, is a
poor choice as a tunneling path**>® since it does not take
account of the MEP’s curvature, which couples the reaction
coordinate to the other vibrational modes. The curvature has
the effect that the dominant tunneling path is on the concave
side of the reaction path, and depending on the magnitude
of the curvature, tunneling is better treated by the small-
curvature tunneling (SCT) approximation®”® or by the
large-curvature tunneling (LCT) approximation®*-37-41-39-6165
for the cases of small and large couplings, respectively (for
collinear atom—diatom reactions with very small curvature
one could also use the Marcus—Coltrin approximation).?
The path implied by the SCT approximation is not uniquely
defined because the calculation is carried out in terms of an
effective mass for tunneling along the MEP rather than using
the true reduced mass along a tunneling path; the curvature-
dependent effective mass is smaller than the true reduced
mass to account for shortening of the tunneling path by
corner cutting. The LCT approximation, in contrast, involves
for every energy an explicit sequence of paths chosen as the
straight lines that join equipotential points on the reactant
and product sides of the vibrationally adiabatic potential
curves along the MEP. Neither the SCT nor the LCT is
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variational; rather they represent limiting cases. However,
the tunneling fluxes predicted by the SCT and LCT ap-
proximations roughly overlap for intermediate curvature, so
they more or less cover the whole range of curvatures. It is
reasonable to define a new tunneling probability that, at every
tunneling energy, gives the larger of the SCT and LCT
tunneling probabilities. This result is called the (microca-
nonically) optimized multidimensional tunneling probability
(uOMT or, for short, OMT).** Note that the ZCT, SCT, LCT,
and OMT tunneling approximations are all multidimensional
in that they all include the important effect that the vibrational
zero point energy (or, in the LCT and OMT approximations,
also excited-state quantized vibrational energies) depends
upon the distance along the reaction path or tunneling path;
thus, the reaction coordinate is not separable in these
approximations, and this mimics VTST in removing one of
the major approximations of conventional transition-state
theory. For this reason, it is most appropriate to apply these
approximations in the context of VTST rather than conven-
tional transition-state theory. The SCT, LCT, and OMT
approximations include multidimensional effects not only in
the vibrational energy requirements along the tunneling path
but also in the choice of the tunneling path.

Very recently?® we have generalized to polyatomic reac-
tions the least-action tunneling (LAT) path, which was
initially developed by Garrett and Truhlar for atom—diatom
reactions.”? In this approximation, one considers, for each
tunneling energy and final vibrational state, a sequence of
paths parametrized by a unique parameter. These paths are
all located at or between the MEP and LCT paths. At every
tunneling energy, the path is variationally optimized within
this sequence by choosing it as the path with the largest
tunneling probability. For this reason, in principle, the LAT
transmission coefficients should be more accurate than those
obtained by the xOMT approximation.

The current version of the LAT method for ground-state
transmission coefficients (which are used to calculate ther-
mally averaged rate constants)*' may be called the least-
action ground-state tunneling method, version 4, (LAG4)
because we always base the transmission coefficients for
thermal reactions on a ground-state transmission coefficient
(computed in the exoergic direction) and because the LCT-
like portions of the calculation are based on version 4 of the
LCT method.® (Note that, although the reactant is in the
ground state for the prototype tunneling process on which
the calculation of the thermally averaged rate is based, a
range of vibrational states is populated in the product of the
tunneling event, if the energy is high enough to populate
dynamically coupled states in the product valley, and
tunneling for excited-state reactants is approximated in terms
of the ground-state tunneling probabilities and the quantized
threshold energies at the variational transition state.) The
present article is concerned with the calculation of LAG4
transmission coefficients, and we will simply abbreviate them
as LAT. Similarly we use LCT as shorthand for LCG4.

The LCT, uOMT, and LAT transmission coefficients are
more computationally intensive than the SCT one because,
whereas the SCT transmission coefficient can be obtained
from a very limited knowledge of the PES, i.e., from



Least-Action Tunneling Transmission Coefficient

information calculated along the MEP (including its curvature
and local force constants for motion transverse to the MEP),
the calculation of the other transmission coefficient ap-
proximations requires information not only along the MEP
but also in the wide region on the concave side of the MEP.
This region is called the reaction swath,%%%7 and it is the
region through which LCT and LAT tunneling paths pass.
The LCT, uOMT, and LAT transmission coefficients involve
the calculation of a potentially large number of points
of the PES in the reaction swath. The development of faster
computers and more accurate density functionals has made
it possible in many cases to evaluate the energy reasonably
accurately at those geometries by direct dynamics, which
allows “the calculation of rates or other observables directly
from electronic structure information without intermediacy
of fitting the electronic energies in the form of a potential
energy surface”.®® Direct dynamics together with VTST/MT
is a powerful combination that, for instance, is being widely
used in the evaluation of thermal rate constants and kinetic
isotope effects (KIEs) of many enzymatic reactions.®

However, the calculation of LCT and LAT transmission
coefficients by direct dynamics is still computationally very
demanding if one uses the original algorithms. For that reason
we developed an algorithm (called ILCT2D) based on a two-
dimensional spline—under—tension,70 to evaluate LCT tunnel-
ing probabilities with a reduction in the computer time by a
factor of about 30.”' The error with respect to the full
calculation is less than 1%. It is the objective of the present
work to present an analogous efficient algorithm based on
spline-under-tension interpolations for calculation of LAT
transmission coefficients using direct dynamics, and we will
present two such algorithms. To show the performance of
the new algorithms, we have chosen the following set of
hydrogen abstraction reactions:

CH, + CF, — CH, + HCF, (R1)
CD,H + CF, — CD, + HCF, (R2)
CD,H + CF, — CD,H + DCF, (R3)

CD, + CF, — CD, + DCF, (R4)

which we have previously studied using the SCT, LCT (with
the ILCT2D algorithm), and ©OMT approximations for
tunneling.”' The calculated thermal rate constants were in
good agreement with experimental data. However, the
calculated KIEs were too low, particularly those for the ratio
R2/R3. In this paper, in addition to developing a more
efficient algorithm for LAT calculations, we use it to apply
the LAT approximation to these reactions to see if this
method improves the previous results.

Section 2 presents a general description of the evaluation
of tunneling transmission coefficients and presents the new
interpolation schemes used for efficient direct dynamics
calculations of LAT transmission coefficients. Section 3
describes the performance of those interpolation schemes for
reactions R1—R4. Section 4 has concluding remarks.
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2. Methodology

The VTST/MT thermal rate constant®”*! can be written as
the quasiclassical canonical variational theory (CVT) rate

constant x“¥T multiplied by the tunneling transmission
coefficient, kY%, ie.,
kCVT/X(D — K_CVT/X(DkCVT(Tv) (1)

where X stands for the ZCT,’* SCT,* LCT,*>***> 4OMT,**
or LAT?*?® approximations for tunneling. In general V"%
is equal to a so-called CAG factor (called <Y<Y and
almost always very close, within about 15%, to unity) times
a more universal transmission coefficient called «*. Since
the CAG factor is explained in detail elsewhere,?! 374! we
concentrate here on k™.

The ZCT approximation assumes that the reaction coor-
dinate is adiabatically separated from the F' — 1 other degrees
of freedom and that all the excited-state vibrationally
adiabatic potentials that significantly contribute to tunneling
have the same shape as the ground-state vibrationally
adiabatic potential VI(s), which is given by

VE(s) = Vaep(s) + 0i(5) 2)

where s is the reaction coordinate mentioned in Section 1
(it measures progress along the isoinertial MEP, being
negative on the reactants side, zero at the saddle point, and
positive on the products side, where the isoinertial coordi-
nates are scaled to a reduced mass of u); Vyee(s) is the
potential along the MEP; and S (s) is the local zero-point
vibrational energy. The other tunneling approximations also
involve the V&(s) but in more complicated ways.

The lowest energy possible to have tunneling is the energy
of the reactant zero-point level when the reaction is written
in the exoergic direction; this is called Ey. The transmission
coefficient is given by

(1) = B exp(BV,°) [, dEPX(E) exp(—BE)  (3)

where f = (kBT)fl, kg is the Boltzmann constant, and 7 is
the temperature; V2 is the maximum of the ground-state
vibrationally adiabatic potential; and P*(E) is the ground-
state semiclassical probability at energy E, which is ap-
proximated in the ZCT and SCT approximations as

0, E<E,

(1 + expl20(E))} ", Ey= E =V

1— PV —EF), V<E=<2v}°—E
1, VM —E <E

PXE) =

“)

where O(E) is the imaginary part of the action integral. When
X = uOMT, the tunneling probabilities are obtained as®*

PSCI(E)

5
PLCT( E) ®)

POVt = max{
E

where P“T is obtained from a more complicated expression
than PS¢,
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In the LCT and LAT approximations, one must sum over
tunneling probabilities from the ground state of the reactants
to all accessible diabatic vibrational states of the product. In
many cases, only the ground-state-to-ground-state process
needs to be considered. Even when the excited states of the
product must be considered, it is sufficient to consider the
ground-state-to-ground-state case to explain the new algo-
rithms being introduced here, and so we limit our consid-
eration to the ground-state-to-ground-state case. (We previ-
ously found”" that tunneling into excited vibrational states
does not make a large contribution for the reactions under
consideration here.)

For a given tunneling path, the imaginary part of the action
integral is given by

0E) =h" [ Im p(E)dE ©)

where & is a progress variable along the tunneling path; &y
and &, mark the beginning and end of the tunneling path,
respectively; and Im p(§) is the imaginary part of the
momentum in the tunneling direction, which is written as

P& = (2u(OIE — V(O 7

where (&) and V(&) are respectively the effective reduced
mass and the effective potential along the tunneling path.
The calculation of the transmission coefficient of eq 3
requires the evaluation of tunneling probabilities at several
energies, and these depend on the tunneling paths. For X =
ZCT the tunneling path coincides with the MEP, and
therefore the progress variable along the path is s, and the
effective potential is given by the ground-state vibrationally
adiabatic potential given by eq 2. The effective mass tefi(s)
= u. Therefore, in the ZCT approximation the action integral,
at every tunneling energy, is given by

o) =h' [ ds2uVi) — BN ®)

where §y and § are the classical turning points in the reactant
and product valleys, respectively. Both turning points obey
the resonance condition:

VaG(EO) = VaG(‘s:l) =E 9

and therefore it is equivalent to write 6(E) or 6(5) in eq 8.
The coupling between the reaction coordinate and the
F — 1 other modes produces an internal centrifugal effect
that shortens the dominant tunneling path at a given energy
by displacing it toward the concave side of the MEP. The
SCT approximation incorporates this effect in the effective
mass for tunneling without an explicit evaluation of the
tunneling path. The SCT action integral is given by

0E) =k [ ds(2un( (Vi) = B (10)

It should be noticed that now the effective mass depends
on the progress along the MEP and that . < u. For this
reason the SCT transmission coefficient is always larger or
equal to the ZCT transmission coefficient.
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To evaluate the LAT tunneling probability, one must
calculate the action integrals of a family of tunneling paths
that depend on a parameter o.. These paths correspond to
the MEP when a. = 0 and to the LCT path, which is a straight
path, for a = 1. Let &p(0) be the length of the tunneling
path along the MEP from &§ to §) (this is equal to §| — &),
and let &p(1) be the length of the straight-line path, which is
shorter. Then, the geometry of a point on the path with
parameter Q. is given by

X[Oﬂ S(O*)’ j‘()] = (1 - (I)X[O, 5(0)7 5:()] + ax[l ’ &(1)» 5:()]
(1D

where x[0, £(0), 5] and x[1, &(1), 5] are respectively geom-
etries on the MEP and on the straight path; thus &(1) is equal
to £(0) times the ratio of &p(1) to &p(0). Consequently, the
progress variable & depends on the value of the a parameter,
and &(1) is less than or equal to &(a), which is less than or
equal to £(0). The probabilities along the series of paths of
eq 11 may involve regions of the PES that are vibrationally
nonadiabatic (see refs. 28 and 41 for details), so in general
the action integral is split into three terms:

0(o, E) = 0)(0, E) + Oy(0L, E) + O(o, E)  (12)

The action integrals 0,(a, E), with i = I and III, correspond
to the adiabatic regions on the reactants (i = I) and products
(i = II) side, respectively, and they are given by the
following expressions:

O B) = A" [ ds@){VoLs,0, £0):50)] —
V(50)} cos z, (13)
Bm(as E) = hil e df(a){VaG[Sm(O, E(O))sfo)] -

Emi(a)
VO3 Peos y, (14)

The total length of the path is &p(@); and the values &i(o) i
=TI and II indicate boundaries of the adiabatic region. Each
of the s40,&(0)), i = I and III values needed for the
evaluation of the vibrationally adiabatic potentials
VaG[s,-(O, £(0)); $0)], is obtained in such a way that the vector
defined by the geometry x[a, £(a), $o] and the reaction path
geometry x[0, £(0), 5] is perpendicular to the derivative of
x[0, £(0), $o] with respect to s at that s value, i.e.,

dx[0, £(0), 5,
{x[a, &), §,] — x[0, £0), 5,1} * S S5l _

ds
(15)

The angles between the gradient and tangent vector to the
path at §y and §, are yo and y;, respectively. If the entire
path is adiabatic (i.e., if there is no region II), then there
will be overlap between regions I and III in the interval &)
< &) = &(o), and the vibrationally adiabatic potential in
that region is taken to be

min{ V[5,(0, £(0));5)], Vilsi(0, £0)):5)1}  (16)

The action integral through the nonadiabatic region is
given by
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—1 rém(@

Oy, E) =h £

dE@){ Vi, &), §,) — VI
(17)

The effective potential Vyff(a, &(), §p) is obtained from

‘/gff(o“’ ‘S(O’)’ §0) = V{X[O“’ ‘S(O’)’ 5:‘0]} + Viorr(a’ 51((1), 50) +
S — &
Vi 5111((1) - EI((X) [Viorr

Vi (oL &), §p) + Vi (0, 5) — Vi(a, )1 (18)

corr N

nh(a’ 50) + ((1, E[][(O*)a 50) -

In this expression the potentials Vion((x, Ei(a), §), i =1
and III correct for the zero-point energy in the modes that
still behave adiabatically. The potentials meh((x, §o) incor-
porate anharmonic nonquadratic corrections to the effective
potential in the same way as in eq 5 of the LCT method.®®
The geometries x[a, &(a), So], needed for the evaluation
of the classical potential V{x[a, §(a), $o]}, are obtained from
the straight path joining the geometries x[a, &i(a), So] and
x[a, Em(o), Sl, i.e.,

x[a, (o), 5] = x[a, &(o), 5] +
&(0) — &i(o)

m(x[a, Em(), 5,1 — x[a, (), 1) (19)

We note that the LCT expressions are obtained for the
effective potential of eq 18 and the action integrals of eqs
12—14 and 17 when o. = 1.

Converged probabilities at every tunneling energy are
obtained by the numerical integration of eqs 13, 14, and 17
at N points along the path; for the present work we set N =
180. If there is a nonadiabatic region, then N; of those N
points belong to region I, Ny are in region II, and Ny are in
region III. The potential in regions I or III is obtained from
the vibrationally adiabatic potential along the MEP. However,
the effective potential at the geometries obtained from eq
19 requires single-point calculations of the potential energy
at points §(a), i =1, ..., Ny, where & (o)) = &(av) and En, (v
= &m(o). We found that the evaluation of the LCT
transmission coefficients by the interpolated large-curvature
tunneling algorithm based on one-dimensional interpolation
(ILCT1D)”? of these potential energies almost perfectly
reproduces the specifically calculated potentials V{x[1, &(1),
So]} when the Ny points are replaced by Ns = 9 equally
spaced points, which are interpolated by a one-dimensional
spline-under-tension.”*’* If, at a given tunneling energy, Ny
< 9, then no interpolation is carried out along the nonadia-
batic region of the tunneling path. Similarly, the above
procedure can be used to obtain the LAT transmission
coefficients; the only difference being that now Ns points
are used to evaluate the a-dependent effective potential of
eq 18. We call this algorithm the interpolated least-action
tunneling method based on one-dimensional interpolation
(ILATI1D).

The calculation of transmission coefficients by the full-
LAT method (without any interpolation) using direct dynam-
ics requires a large amount of computer time, so we tested
the performance of the ILAT1D algorithm by using analytical
PESs. We used the same analytical PESs as for the testing
of the ILCT1D method and found that the mean unsigned
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percentage error (MUPE) of the ILATID algorithm with
respect to a full LAT calculations (as a reference) is smaller
than 0.20% in the interval from 7 = 200—400 K (see
Supporting Information for further details of these tests).
Therefore, we believe that the transmission coefficients
obtained by the ILAT1D algorithm can safely replace full
LAT calculations without loss of accuracy. Hereafter, we
use the ILAT1D algorithm as a reference in the development
of more approximate algorithms, as discussed below.

The ILATI1D algorithm is still very expensive in computer
time, since the value, &, of o that minimizes the action of
eq 12 is obtained by a golden section search’ at every
tunneling energy. Therefore, we developed another, even
more efficient algorithm that further reduces the number of
tunneling energies at which the least-action integral, O(@, E),
has to be explicitly computed. The method is described next.

In the ILATID algorithm the least-action integral is
evaluated at tunneling energies E;, i = 1, ..., M, with E,
being the lowest energy at which it is possible to locate the
classical turning points that determine the straight path and
M being the number of tunneling energies (all below the
maximum of the vibrationally adiabatic potential) at which
the tunneling probabilities are calculated. In general, one has
40 <= M = 80. The tunneling energies that are computation-
ally most demanding are those for which there is a nona-
diabatic region for some of the possible tunneling paths. It
should be noticed that the absence of nonadiabatic region at
a given tunneling energy along the LCT path means also
the absence of nonadiabatic regions at any of the a-dependent
paths at that tunneling energy and makes the LAT and LCT
probabilities coincide. The potential in the adiabatic region
is readily available, because it can be obtained from
information along the MEP. Therefore the effort in develop-
ing the more efficient algorithm is focused on the E;, i =1,
..., My tunneling energies with nonadiabatic regions along
the straight path, where Ej=y, is the highest tunneling energy
for which there is a nonadiabatic region along the LCT path.
It is possible to reduce computer time by explicitly evaluating
the least-action integral at Ms tunneling energies instead of
at My tunneling energies. The remaining least-action integrals
are obtained implicitly by interpolation with a one-
dimensional spline-under-tension. The My tunneling energies
are chosen in such a way that E; and E), are the first and
last energies of the fit, respectively, and the remaining Ms
— 2 energies are taken as equally spaced between those two
values. (We also considered interpolating @ instead of
0(a, E), but we found, as shown in Section 3, that the latter
is a much better choice because (@, E) changes smoothly
with the tunneling energy.) In summary, the new algorithm
uses one-dimensional interpolation for both the tunneling
paths and the optimized action integrals, and therefore we
call the method the double interpolated least-action tunneling
(DILAT) method.

The remaining steps are explained fully in previous
discussions of the LCT and LAT methods*®*'%7® and so
are only briefly summarized here. The least-action integrals
obtained at every tunneling energy are used to compute
tunneling amplitudes defined by
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Tin (6, 8) = T (@, 5) = exp[—60(&,§)]  (20)
The LAT primitive probability at every tunneling energy,
using either the ILAT1D or DILAT algorithm, is obtained
from the tunneling amplitude of eq 20 plus the contribution
due to the vibrational motion perpendicular to the reaction
coordinate along the incoming and outgoing trajectories. The
LAT primitive probability is then uniformized such that it
goes to half of the maximum of the ground-state vibrationally
adiabatic potential. The resulting LAT tunneling probabilities
are also used for the calculation of the nonclassical over-
the-barrier tunneling probabilities, as in eq 4.

Note that the #OMT transmission coefficient is always
greater than or equal to both the SCT and LCT ones, and
the LAT transmission coefficient is always greater than or
equal to the LCT one. However, the LAT transmission
coefficient can be either greater or smaller than the SCT one,
because the LAT paths lie between the MEP and LCT paths,
but the LAT method does not incorporate the small-curvature
limit explicitly.

A full calculation of the LAT transmission coefficients
scales as M x N x L, since for each of the M tunneling
energies, we need to perform L iterations to obtain a
converged least-action integral on tunneling paths obtained
with N single-point calculations. Typical values for these
parameters are M = 60, N = 180, and L = 25, which
involves approximately 3 x 10’ single-point energy calcula-
tions. Many of those points fall in the adiabatic regions, so
they can be readily calculated from the information available
along the MEP, and only the evaluation of the effective
potential of nonadiabatic region II requires additional direct
dynamics electronic structure calculations. The number of
points in the nonadiabatic region in the full calculation would
be My x Ny x L, where Ny is the average of nonadiabatic
points at every tunneling energy. The size of the nonadiabatic
region depends on the PES, but reasonable numbers for My
and Ny are 40 and 50, respectively, and therefore the number
of single-point calculations in the nonadiabatic region is
approximately 5 x 10*. The ILAT1D algorithm reduces the
number of single-point calculations to My x Ng x L such
that it requires approximately 9000 single-point calculations
in the nonadiabatic region. The DILAT algorithm reduces
further the number of single-point calculations by the ratio
My/Ms.

The ILAT1D and the DILAT algorithms for the calcula-
tion of LAT transmission coefficients using direct dynam-
ics have been implemented in a development version of
POLYRATE,”” and we plan that they will be made
available in an upcoming new release version of the
program.

3. Applications

The electronic structure calculations needed for the evaluation
of LAT transmission coefficients for reactions R1—R4 using
the ILAT1D and DILAT algorithms were performed with
the MPWB1K’® density functional using the 6-314+G(d,p)
basis set.”® The details of the electronic structure calculations
can be found in ref 71. The previous calculations showed
that the maximum of the vibrationally adiabatic potential
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Figure 1. Plot of the a parameter versus the tunneling energy
(E, in kcal-mol™") relative to the reactants at their equilibrium
separation without zero-point energy. The dots correspond
to the values of a at which there are local minima of the
imaginary action integral at all of the calculated tunneling
energies. The solid line joins the global minimum of the a
parameter, &, at every tunneling energy.
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Figure 2. The solid line shows the variation of the imaginary

action integral, 6(&, E), of eq 12 with the tunneling energy (in
kcal-mol™).

occurs at the saddle point, that is, VAG = V4G and that there
are no variational effects in the interval of temperatures
between 200 and 700 K, so the variational dividing surface
is located at the conventional transition state. Besides, VT
of eq 1 equals ¥ because k¥4 = [,

Figure 1 shows that the values of & at different tunneling
energies may change abruptly, which makes a fit of & as a
function of tunneling energy quite difficult and inaccurate,
so instead we chose to interpolate the action integrals
corresponding to &. It is noteworthy that there are several
tunneling energies with two or even three local minima for
the imaginary action integral. However, even in this difficult
case, an interpolation of the least-action integral as a function
of tunneling energy is easier to perform than an interpolation
of & due to the smooth behavior of 6(@, E), as shown in
Figure 2.

Table 1 lists the number of single-point calculations needed
to evaluate the effective potential of eq 18 for R1 for the
calculation of the LAT transmission coefficients with the
ILATID and DILAT algorithms (the number of points for
R2—R4 is similar to R1 and is not shown in the table). We
use as reference calculations those obtained by the ILAT1D
algorithm. The ILAT1D algorithm allows one to obtain LAT
transmission coefficients 7.5 times faster than the full LAT
calculation. In this case the DILAT algorithm is 50 and 20
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Table 1. Number of Single-Point Calculations (NSP) in the
Nonadiabatic Region Needed for the Calculation of the
LAT Transmission Coefficients with Selected Values of Mg
for Reaction R1

level Ms NSP
full 43 137 895
ILAT1D 43 18 564
DILAT 7 2809
9 3699
13 5165
17 7264

Table 2. MUPEs for Reactions R1—R4 of the LAT
Transmission Coefficients Obtained by DILAT for Different
Numbers of Fitting Points, Ms, When Compared with
ILAT1D Reference Values

MUPE
Ms R1 R2 R3 R4
T=250K
5 16.56 17.76 1.70 18.11
7 7.88 7.12 2.08 0.61
9 9.54 11.32 6.17 1.33
11 9.00 12.12 0.54 3.58
13 0.51 1.28 3.06 2.27
15 1.74 2.59 0.77 5.25
17 0.51 2.15 0.02 4.86
19 3.68 5.10 0.63 5.83
T=2300K

5 13.06 14.12 1.19 4.62
7 6.06 5.20 0.27 1.04
9 9.85 9.90 2.93 1.31
11 8.79 9.31 0.29 0.69
13 1.30 1.67 1.39 0.40
15 1.39 2.13 0.36 1.21
17 0.61 1.79 0.01 0.97
19 4.02 4.28 0.36 1.56

times faster than the full calculation for My =7 and 17 points,
respectively. The next step would be to test the accuracy of
the LAT transmission coefficients by the DILAT algorithm
by finding the optimum number of My points that give the
best compromise between accuracy and computational cost.
The procedure to obtain the transmission coefficients was
the one described in the previous section, i.e., a set of
6(a., E,) values at energies E,, r = 1, ..., Mg is chosen,
with E,=, being the lowest tunneling energy at which it is
possible to locate the classical turning points on the MEP
for defining the straight path and E,—j, being the last
tunneling energy at which there is a nonadiabatic region
along the straight path.

The deviation from the ILATID values of the DILAT
transmission coefficients for different numbers of fitting
points is given in Table 2 and plotted in Figure 3 for reactions
R1—R4. For the present study, we have considered temper-
atures from 250 to 400 K, which for many practical
applications is the temperature range for which one needs
to evaluate the tunneling. At 7= 250 K the smallest value
of Ms that yields an accuracy better than 5% is Ms = 13
(and an interpolation with this value is hereafter called
DILAT(13)). However, the interpolation using Ms = 7
(hereafter DILAT(7)), although it gives MUPES about three
times larger than DILAT(13), yields small errors when
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AN R1/R4 250K ——
: R1/R4 300K e ]
R2/R3 250 K ----=-

R2/R3 300 K

MUPE

Figure 3. MUPEs for 74 4 and 72 3 KIEs obtained by the
DILAT algorithm using different fitting points to a spline-under-
tension with respect to those LAT values obtained with the
ILAT1D algorithm. The solid line plots the MUPE obtained at
T =250 and 300 K.

Table 3. Transmission Coefficients for Reactions R1—R4

LCT? LAT?

reaction T (K) SCT ILCT2D xOMT? DILAT(7) DILAT(13) ILAT1D
R1 250 21.9 28.1 314 39.4 36.1 36.3
300 9.18 926 107 11.6 10.7 10.9

350 5.32 497 578 5.75 5.43 5.52

400 369 337 388 3.73 3.57 3.62

500 2.37 216 242 2.28 2.22 2.25

R2 250 161 158  18.2 19.6 18.0 18.2
300 7.40 6.83 7.91 7.79 7.27 7.39

350 454 413 474 4.50 4.27 4.33

400 327 298 336 3.16 3.03 3.07

500 2.18 2.02 222 2.09 2.03 2.06

R3 250 152 107  16.0 11.8 11.7 12.1
300 652 460 6.68 4.84 4.76 4.83

350 3.94 292 3.98 3.00 2.98 2.99

400 2585 222 2.86 2.26 2.24 2.25

500 1.95 1.64 1.95 1.66 1.65 1.65

R4 250 143 103 153 11.7 11.9 11.6
300 6.29 449 647 4.65 4.68 4.70

350 3.85 2.87 3.90 2.92 2.92 2.83

400 2580 220 2.82 222 2.22 2.22

500 1.93 1.63 1.93 1.64 1.64 1.64

2 From ref 71. There are errors in Table 7 of ref 71; the correct
values of the LCT and uOMT transmission coefficients are listed
here. © LAT transmission coefficients.

compared with Ms =9 or 11 points and is about two times
faster than DILAT(13), so comparisons involving both of
them are interesting. At 7 = 300 K, all the MUPEs are
smaller, with the largest errors for DILAT(7) and DILAT(13)
being 6% and 1.7%, respectively. For reactions R1—R4,
Table 3 shows the DILAT(7) and DILAT(13) transmission
coefficients together with the reference ILAT1D transmission
coefficients.

In general Table 2 shows convergence to about 5% and
1% at 250 and 300 K, respectively.

The transmission coefficients are compared in Table 3.
To compute the KIEs 77, 4 = kgi/kgrs and 12, 3 = kgo/kgs using
several tunneling approximations, we have factored them into
two contributions

TST/X _ X _ TST

n = N (2 1)
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Table 4. Calculated KIEs Using Various Approximations
for Tunneling?®

T(K) 5TST yTST/SCT ,TSTACT ,TST/OMT §TSTILAT a Hoxp®
R1/R4
250 7.8 11.9 21.3 16.0 26.3 23.7 244 -—
300 5.8 8.4 11.9 9.6 145 133 135 -
350 4.6 6.4 8.0 6.8 91 86 9.0 -
400 3.9 5.1 6.0 5.4 65 6.3 6.4 6.5°
500 3.0 3.7 4.0 3.8 42 41 41 48°
R2/R3
250 5.7 6.0 8.4 6.5 94 88 86 -—
300 4.4 5.0 6.5 5.2 71 67 67 -—
350 3.7 4.3 5.3 4.4 57 53 54 13.0
400 3.2 3.6 4.3 3.2 45 43 44 85
500 2.6 2.9 3.2 3.0 33 32 32 50

2 The last column lists the experimental KIEs. LAT transmission
factors obtained with DILAT(7), DILAT(13), and ILAT1D algorithms
are listed in columns 6—8, respectively. ® From refs 80 and 81.
°Erratum in Table 8 of ref 71; the correct values of the
experimental KIEs are listed here.

In eq 21, ni, includes quantum effects (tunneling plus
nonclassical reflection) on the reaction coordinate using the
approximation X, where X = SCT, LCT, uOMT, or LAT,
and ™57 includes the symmetry numbers, the classical
translational and rotational contributions, and the quasiclas-
sical quantized vibrational contribution. (There is no potential
energy contribution in the cases considered here because the
variational transition state is the conventional transition state
for these reactions.)

Table 4 lists the KIEs obtained by the different tunneling
approximations together with the experimental®®®! data.
In general, all the methods underestimate the observed
KIEs, although the ones obtained with the LAT ap-
proximation for tunneling are in better agreement with
experimental values. The LCT transmission coefficients
may underestimate the tunneling contribution in same
cases, as was pointed out by Sansén et al.,%? however the
KIEs obtained by this approximation are quite similar to
the LAT ones. The uOMT approximation gives similar
results to those obtained with the LAT approximation for
the hydrogen abstraction processes, but it gives larger
values for the deuterium transfer. Therefore, this discrep-
ancy is due to the magnitude of the SCT transmission
coefficients for deuterium transfer, which has the effect
of decreasing the calculated KIEs. In any case the 7 3
KIEs calculated using the LAT approximation for tun-
neling are still too small when compared to the available
experimental data. From these values we arrive to the same
conclusions as in ref 71, i.e., at the moment we cannot
explain this discrepancy, and we encourage further experi-
ments on these systems.

Finally, it is interesting to analyze the errors (with
respect to a ILAT1D calculation) of the DILAT method,
not just in the case of the transmission coefficients but
also in the context of the KIEs. In the worst scenario, the
largest error in the evaluation of the KIEs would be the
sum of the MUPEs, i.e., assuming no error cancellation.
Using this worst-case possibility, we establish a maximum
error of the DILAT(7) algorithm at 7= 250 K of 9% for
11,4 and 772 3. For DILAT(13), these errors go down to
3% and 4% for 71, 4 and 7, 3, respectively. In round
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numbers, the errors of the DILAT(7) and DILAT(13)
algorithms, at 7 = 250 K, are smaller than 10% and 5%,
respectively. In fact the errors, as shown in Figure 3, due
to error cancellation are 7% and 4% for #; 4 and 9% and
2% for 175, 3 using DILAT(7) and DILAT(13), respectively.

At T = 300 K, if we assume no error cancellation, the
MUPE:s for #, 4 and 7, 3 would be about 7% and 3% for
DILAT(7) and DILAT(13), respectively. Similar calculated
errors are obtained for DILAT(7), but when using DI-
LAT(13), the calculated MUPEs are less than 1% for both
of the two evaluated KIEs. These results are very encourag-
ing, especially when we take into account that the DILAT(7)
and DILAT(13) methods are, respectively, 6.6 and 3.6 times
faster than ILATID and about 50 and 30 times faster than
the full (uninterpolated) calculation. It should also be noticed
that this is a difficult case with two or three minima in the
action integral at every tunneling energy, so for reactions
with a less abrupt PES, the errors are expected to be smaller.
The present results show that the DILAT(13) algorithm is
reliable above T'= 250 K to within 5% for the cases studied,
although more testing would be needed to make broadly
applicable statements of this nature.

4. Concluding Remarks

We have presented two algorithms for efficient direct
dynamics evaluation of the least-action tunneling (LAT)
transmission coefficients for polyatomic reactions. The
interpolated least-action tunneling method based on one-
dimensional interpolation (ILATID) uses the same phi-
losophy as the previous ILCT1D algorithm; in particular,
both make use of spline-under-tension interpolations for
the effective potentials in the nonadiabatic regions of the
tunneling paths. This algorithm, depending on the system,
is about 5—10 times faster than the full calculation without
loss of accuracy. However, the ILAT1D procedure is still
quite expensive for polyatomic systems, so we have
developed a much less expensive algorithm called double
interpolated least-action tunneling, DILAT, which employs
one-dimensional interpolations of not only the effective
potential along nonadiabatic portions of the tunneling
paths but also of the values of the action integrals as
functions of energy. This even simpler method still
provides quite accurate results. The performance of the
DILAT algorithm was tested for four hydrogen/deuterium
abstraction reactions, and we found that the optimum
number of effective potential energies to be calculated in
the nonadiabatic region is Mg = 13. The DILAT method
based on 13 tunneling energies can be from 3 to 5 times
faster than the ILATID algorithm, depending on the
characteristics of the nonadiabatic region, but with an error
of less than 5%. The method is being incorporated into
the POLYRATE computer program.

The LAT calculations do not account for the discrepancy
from experimental 77, 3 KIEs of the previously computed
KIEs that were based on the less accurate large-curvature
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tunneling (LCT) approximation. This discrepancy remains
unexplained.

Glossary

This glossary contains an explanation of all acronyms used
in this article. The acronyms are explained at first use, but
this is an extra guide for convenience.

CAG: classical adiabatic ground-state, a factor (usually
close to unity) that makes the a transmission
coefficient based on the vibrationally adiabatic
ground-state potential curve consistent with a
quasiclassical transition state calculation that
implies a different threshold energy.

CVT: canonical variational theory, VTST applied to a
canonical ensemble.

DILAT:  doubly interpolated LAT.

ILATID: interpolated LAT method based on one-dimen-
sional interpolation.

ILCTID: interpolated LCT method based on one-dimen-
sional interpolation.

ILCT2D: interpolated LCT method based on two-dimen-
sional interpolation.

KIE: kinetic isotope effect, the ratio of rate constants
for two reactions differing by isotopic substitu-
tion or isotopic placement.

LAG4: least action ground state, 4, version 4 of the LAT
method when applied with the ground-state
tunneling approximation.

LAT: least-action tunneling, a dynamical approximation
for computing tunneling probabilities based on
minimizing the magnitude of the imaginary part
of the action integral along the tunneling path.

LCT: large-curvature tunneling, a dynamical approxima-
tion for computing tunneling probabilities that
is appropriate when the MEP has large curva-
ture in the tunneling region.

MEP: minimum-energy path in isoinertial coordinates.

#OMT:  microcanonical OMT, a dynamical approximation
for computing tunneling probabilities in which
the choice between SCT and LCT tunneling is
optimal at each tunneling energy (may be
considered to be a poor person’s version of
LAT).

OMT: shorthand for fOMT.

PES: potential energy surface, same as potential energy

function.

SCT: small-curvature tunneling, a dynamical approxi-
mation for computing tunneling probabilities
that is appropriate when the MEP has only small
curvature in the tunneling region.

VTST:  variational transition-state theory, a theory for

calculating absolute reaction rates from PES
information.
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VTST/  VTST with multidimensional tunneling, for ex-
MT: ample, with tunneling computed by the ZCT,
SCT, LCT, uOMT, or LAT tunneling approxima-

tion.
ZCT: zero-curvature tunneling, a dynamical approxima-

tion for computing tunneling probabilities that
assumes that the tunneling path is a straightened
MEP and that the vibrational motions orthogo-
nal to the tunneling path are adiabatic.
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Abstract: Neuropeptide Y (NPY) has been found to adopt two stable conformations in vivo:
(1) a monomeric form called the PP-fold in which a polyproline tail is folded onto an a-helix via
a f-turn and (2) a dimeric form of the unfolded proteins in which the a-helices interact with
each other via side chains. The transition pathway and rates between the two conformations
remain unknown and are important to the nature of the binding of the protein. Toward addressing
this question, the present work suggests that the unfolding of the PP-fold is too slow to play a
role in NPY monomeric binding unless the receptor catalyzes it to do so. Specifically, the
dynamics and structural changes of the unfolding of a monomeric NPY protein have been
investigated in this work. Temperature accelerated molecular dynamics (MD) simulations at
500 K under constant (N,V,E) conditions suggests a hinge-like unraveling of the tail rather than
a random unfolding. The free energetics of the proposed unfolding pathway have been described
using an adaptive steered MD (SMD) approach at various temperatures. This approach
generalizes the use of Jarzynski's equality through a series of stages that allows for better
convergence along nonlinear and long-distance pathways. Results acquired using this approach
provide a potential of mean force (PMF) with narrower error bars and are consistent with some

of the earlier reports on the qualitative behavior of NPY binding.

1. Introduction

The true nature of conformational changes undertaken by a
given bioactive ligand during its binding to a receptor
remains an elusive and important target for the development
of novel drugs. The binding of a small ligand to a large
membrane receptor is a dynamic process and is therefore
difficult to observe using classical experimental approaches.
Although atomic force microscopy (AFM) presents insightful
information regarding the force required to unfold a particular
protein, the detailed unfolding process is generally not
observed in AFM experiments. Computer simulation tech-
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" Georgia Institute of Technology.

*Virginia Polytechnic Institute and State University.

§ Kimberly-Clark Corporation.

niques—to the limit of the accuracy of the model potentials
and the integration of the equations of motion—provide a
useful approach for elucidating the complete unfolding
pathway of the protein of interest.' > For example, in silico
simulation using forced molecular dynamics agrees well with
the corresponding AFM force pulling experiments.®”

The neuropeptide Y (NPY) ligand has been a primary
target of many recent pharmacological studies because of
its implicated function in the brain.'°"'* Consisting of 36
amino acids, NPY is the most abundant neuropeptide in the
mammalian central nervous system'® and widely expressed
in the peripheral nervous system.'! Several important physi-
ological activities such as induction and control of food
intake, inhibition of anxiety, increase in memory retention,
presynaptic inhibition of neurotransmitter release, vasocon-
striction, and regulation of ethanol consumption have been
attributed to NPY.'? The multifunctionality of NPY is the

10.1021/¢ct100320g © 2010 American Chemical Society
Published on Web 09/14/2010
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Figure 1. The structure of NPY (with the water solvent hidden) shown at 5 points along a single steered MD unfolding pathway
at 500 K. The NPY backbone is illustrated using a brown ribbon. The first frame shows a stable folded NPY protein derived and
equilibrated over the coordinates from the PDB file, 1PPT, and the last frame is an illustration of the unfolded protein (1RON).
Both structures have the same 36 amino acid sequence: Y—-P—S—K-P-D—-N-P-G—-E-D—-A-P-A—-E-D-M-A-
R-Y—-Y-S—A—-L-R—-H-Y—I-N—-L—-I-T—R—Q—R-Y. The first eight of these residues comprise the tail. The remaining frames
illustrate the unhinging of the tail from the o helix as obtained from a particular unfolding trajectory in this work. The three
residues most clearly marking the unhinging of the tail are shown in atomistic detail: LEU24 (in black on the helix), ALA12 (in

black on the turn), and PROS5 (in red on the tail).

result of its affinity to bind to at least six receptor
subtypes—enumerated as Y1 through Y6—belonging to the
rhodopsin-like superfamily of G protein-coupled receptors.
It has been shown that receptors Y1, Y4, and Y6 are closely
related to each other."® A recent study on the evolution of
neuropeptide Y receptors (Y3 was not investigated) has led
to a partitioning into three subfamilies of receptors: Y1/Y4/
Y6, Y2, and Y5."

NPY is a member of the pancreatic polypeptide (PP)
hormone family that includes also pancreatic polypeptide
(PP) and peptide YY (PYY)."> All three ligands share a
common hairpin-like structure in tertiary form called the PP-
fold. Therein, the N-terminal residues (1—S8) adopt a
polyproline type II helical conformation (tail). Residues 9—13
form a loop that allows the tail to fold onto an a-helix
(residues 14—31), and the C-terminal residues (32—36) are
so flexible that they do not participate in the o-helical
conformation (14—31).1°"18 NMR studies have shown that
NPY adopts a different conformation in the dimeric form'®~!
or when bound to membrane mimetic, dodecylphosphocho-
line (DPC) micelles.”?>** In this particular state, the NPY
tail is observed to be destabilized and positioned away from
the a-helix. Recently, Bettio et al. reported, in contrast to
earlier reports,m_18 that at low concentrations monomeric
NPY favors a less ordered structure in which the S-turn of
NPY is more destabilized.*

The numerical study described herein aims to provide a
dynamical explanation for the mechanism performed by an
NPY molecule during its structural transition between the
reported open (PDB*° ID: 1PPT*®) and closed (PDB ID:
IRON?") conformations. Figure 1 demonstrates a reduced
representation of the unfolding of NPY using only five ribbon
diagrams in order: the folded form (pp-fold), three intermedi-
ate structures, and an unfolded form. Knowledge of the
pathway may be of use in the design of ligands to stimulate
NPY toward the desired fold in vivo, regulators for the
binding of NPY to lipid membranes, and alternative recep-
tors. The present work, in particular, provides some insight
into the likely form—PP-fold or free tail—adopted by NPY
as it binds to a receptor. This article is structured as follows:
High temperature MD simulations are used to accelerate the
unfolding process and to observe a possible unfolding
pathway for said process. The proposed unfolding pathway
is investigated using steered molecular dynamics (SMD)

simulations. The free energy along this path is generally
obtained from the SMD trajectories through the use of
Jarzynski’s nonequilibrium work relation. Unfortunately, the
standard application of this approach did not converge within
available computational resources. An auxiliary central result
of this work is the development of a stepwise adaptive SMD
scheme for the calculation of the free energy along a
nonlinear and large-distance pathway, in section 2.3. The
time scale of the structural stability of NPY is obtained by
way of a determination of the transition state theory rates
on the computed surfaces. We observe that the NPY tail
follows a hinge-like motion while folding/unfolding. We
have also confirmed that the PP-fold conformation of NPY
is favored in monomeric form, which was previously
proposed by Nordmann et al.'®™'®

2. Methods

2.1. Accelerated MD Simulations at Elevated Temper-
ature. The relative dynamics of the a-helix and tail in NPY
immersed in a periodic box of water molecules have been
simulated using several computational protocols to overcome
the long times needed to follow simulations of the folding
process. The focus of the simulations is the unfolding of
NPY, as it is faster than the folding process while still
revealing the folding pathway(s). The initial state of the
unfolding process—namely, the protein’s crystal structure—is
also more clearly defined than the structures of the unfolded
protein basin, and this offers additional numerical advantages
in attempts to map out the pathway.?’

Molecular dynamics simulations have been carried out
using the NAMD?® molecular dynamics integrator with the
forces in NPY specified through the CHARMM force field.*
The water molecules are treated using the TIP3P*° model,
and 13 178 water molecules are included in the cube. A time
step of 1 fs has been employed in all simulations. Electro-
static interactions have been calculated through the particle
mesh Ewald (PME) method.?! Solvated structures are initial-
ized by inserting NPY into an appropriately sized cavity
created within an equilibrated neat water box. These are
equilibrated at 50 K for 5 ps and subsequently heated
gradually to the temperature of interest. An NPT equilibration
run (at the desired final temperature) is then performed to
ensure that the cubic box has a density consistent with 1.0
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atm of pressure. Temperature control is realized within the
NAMD program by integrating the Langevin equation with
the Brunger—Brooks—Karplus (BBK) method, which is a
natural extension of Verlet integration. This results in an
ensemble of structures in which NPY is constrained to its
folded state within an equilibrated solvent inside of a cubic
box with sides roughly between 70 and 75 A.

Each member of the ensemble of solvated folded-NPY
structures is allowed to freely propagate for 5 ps under
constant (N, V, E) conditions. It is common practice to run
such simulations under constant (N, V, T) conditions using
thermostats on all the atoms in the system. However, this
has the possible negative side effect of suppressing fluctua-
tions in energy that lead to correlated energy flows between
molecules and therefore overly lose correlation as the system
evolves in the heat bath.>* For example, several popular MD
packages, including NAMD, have recently been shown to
suffer from a serious problem associated with the random
number generators implemented in their thermostat algo-
rithms.** In order to differentiate the unfolding mode from
any other mode in the system, the alternative is to run the
simulation under constant (N, V, E) conditions at an energy
that is thermodynamically consistent with the temperature.
This has the disadvantage that the total energy of the box is
constant, but with a sufficiently large water box the effective
dynamics of the NPY protein will still be that of an open
system at constant temperature. The results from a small
number of (N,V,T) and (N, V,E) MD simulations are
described later, but the conclusion is that all of the remaining
simulations could be performed using constant (N, V, E)
conditions without losing the notion of temperature along
the unfolding path.

Although we are primarily interested in the unfolding
dynamics of NPY at 310 K, the duration of such trajectories
is so long that it would entail simulations that are cost-
prohibitive. Among several accelerated dynamics approaches
now available in the literature, we chose to overcome this
obstacle using temperature acceleration,®® as it has been
previously reported to accelerate the unfolding process
without altering the pathway.*® This is valid assuming that
thermal unfolding of proteins demonstrates Arrhenius be-
havior.” However, some reports claim that protein unfolding
can show non-Arrhenius behavior,>®” and therefore tem-
perature acceleration may result in losing some intermediate
states.*®* In the present context of NPY unfolding, the
resulting potentials of mean force (shown below) contain
only a single barrier at both low and high temperatures and
hence are consistent with the requirement of Arrhenius
behavior. Preliminary runs were tested at 7 = 300 K, 367
K, 433 K, and 500 K in a cubic box with sides of 75 A
solvated with equilibrated water (TIP3P) molecules. As will
be shown below, NPY unfolded only at 500 K within 100
ps, and hence it became the temperature of choice for the
temperature accelerated MD simulations in this work. A
temperature of 500 K is well above any natural biological tem-
perature and is also above the protein melting temperature,
T An experimental system under these conditions would
exhibit different dynamics than the biological case. The water
system in the computer model, however, remains as a
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metastable and superheated liquid because neither chemical
bond breaking-and-making or evaporation pathways are
available to it. The key assumption is that the dynamical
pathways also remain in the same universality class, and thus
we require additional tests to confirm the predictions of
correlation functions using temperature acceleration. As will
be shown below, the model system exhibits the appropriate
chemical structures (in the same universality class) as those
of the lower temperature.

2.2. Measurables and Correlation Functions of the
Trajectories. Analysis of the trajectories was carried out by
several methods. Both pepstat, which is our own code, and
the NAMD/VMD package were used for trajectory analysis,
with the latter focusing on the graphical representations of
the trajectories.

Although the tail section exhibits the most dramatic
dynamical changes, structural metrics were collected through-
out the protein simulations. Within the polyproline tail
(residues 1—12), the time dependence of the end-to-end
distance and radius of gyration, Ré =1/N Zf(\’:l(rk — rmean)z,
are measured. The time dependence in the tail-to-helix
distance is inferred by way of the pairwise distances between
residue pairs, 1—31, 4—27, 5—24, 7—20, and 8—16.

The results shown below [cf. Figure 3b] suggest that the
unfolding pathway involves the unhinging of the tail away
from the a-helix instead of sliding. This unhinging occurs
about the pivot represented by the ALA12 residue and is
measurable through a so-called tail-turn-helix angle. While
the o-helix is relatively stiff through this unfolding, the
N-terminal of the polyproline tail—and particularly TYR1
to LYS4—is much floppier. The remaining residues (PRO5
to ASP11) on the tail follow a smoother unhinging and can
be used to define the tail-turn-helix angle.

2.3. The Unfolding Path and the Potential of Mean
Force (PMF). The domain of the energy landscape of even
a small protein such as NPY has a high dimensionality. The
identification of an unfolding pathway is therefore useful
because it greatly reduces this dimensionality. Once identi-
fied, the energetics along this pathway are determined by
the potential of mean force (PMF). [See, e.g., ref 40.] The
importance of the PMF as well as the difficulty in calculating
it has led to the development of far too many approaches to
list here. Instead, we focus on those approaches which rely
on sampling the states directly from trajectories. Unfortu-
nately, the use of unconstrained trajectories is cost prohibitive
when the processes of interest are very slow and dominated
by deep minima. Instead, SMD can accelerate such processes
by applying steering forces along the chosen unfolding
pathway. Such a nonequilibrium process would not seem to
provide the unconstrained structures required to obtain the
equilibrium PMF. This problem was resolved by Jarzynski
when he showed that an appropriately weighted average of
the nonequilibrium work over many such SMD trajectories
leads to the PMF.*'*? Jarzynski’s equality has been validated
numerically on several systems such as deca-alanine stretch-
ing by Park and Schulten,** Ace—ALAg—NMe unfolding and
ligand diffusion in globins by Xionget et al.,** and Angeli’s
salt decomposition by Torras et al.*> It has been compared
to existing biased MD techniques, such as to umbrella
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sampling®® and to targeted MD,*’ yielding comparable
results. It has also been verified in the context of experimental
results such as RNA unfolding by Liphardt*® and a mechan-
ical oscillator.*” Below, we provide a review of Jarzynski’s
inequality and its implementation within SMD to obtain the
PMF along a selected pathway. In so doing, we also introduce
a generalization of this approach to account for long-range
nonlinear unfolding pathways.

2.3.1. Review of Jarzynski’s Equality. Jarzynski’s equality
was originally expressed in terms of classical Hamiltonian
systems.*'*? It was extended to thermostatted stochastic
systems by Crooks.’® Crooks’ introduction of a heat bath
ensures that after sufficient time upon reaching a given
nonequilibrium state, the system will reach an equilibrium
with the environment at no additional cost of work. Jarzyn-
ski’s equality for dissipated Hamiltonian systems can be
stated as follows. Suppose a classical mechanical system
consists of N particles, denoted by the phase space variables
z, which are surrounded by a large enough heat bath. A
constraint on the configuration space z, is imposed through
the projection &, = £,(z,) acting in configuration space alone.
The constrained Hamiltonian may be written as

H(T,0) = H*(;0,) + H*(©) (1a)
=T1%§) + H.(;:0,) + H*(©) (1b)

where S, E and B denote the constrained system, environ-
ment, and bath, respectively; the subscript x (p) refers to the
position (momentum) components; and 75 is the kinetic
energy for the constrained system variables. The system
variables not constrained by &—viz., the environment—
comprise a space of dimension lower than 6/, and its phase
space variables are represented through I'. The phase space
variables ® comprise the positions ©, and momenta ©, of
the bath, and their dynamics are weakly coupled to I in the
HEX term. The constraint &, is typically one-dimensional and
serves as an order parameter or reaction path that defines a
state of the system. The space defined by I, is orthogonal
to &, and denotes the environment exclusive of the bath ©.
The nonequilibrium process between two points in the
constrained space is driven by the addition of a time-
dependent Hamiltonian

H'= H'E,.1) 2

that acts only on &,. That is, the total time-dependent
Hamiltonian is H* = H2*® + H’. In what follows, we will
not generally distinguish between the phase space & and
configuration space &, variables, for simplicity.

The change in the energy as the system is carried from an
initial state & to a final state &, corresponds to the work done
by H’ (&, r) through this & — &, process,

W=, ©,T),0)) = Hi(T;0) — HL(T;:0,) (3a)
=H'E,. 1 — H'&,0) (3b)

where T'; and O, are connected to I’y and ©, through the
propagator during the &, — &, process for a time z.
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The equilibrium partition functions associated with the
initial and final points associated with the & <— O process

can be rewritten in terms of the original system variables
ag31:52

2= [dee MO0 - & (4a)

_ fdz de e—ﬁ(HEEB(T,GHH'(&J)} S(ER) — &) (4b)

which is related to the potential of mean force, G(&), through

the reversible work theorem, In Z8 = —BG(&). In terms of

these free energies, Jarzynski’s equality,*'**°? is
_ 1 —BWErEo

G(&) = G(&) — Bln(e % %)

where the ensemble average is taken over the initial variables
(z, ©) satisfying the constraint, £(z,) = &,. Note that, similar
to the ground-state dominance in the calculation of a partition
function, the Jarzynski average is dominated by the trajec-
tories with the lowest work change.

Jarzynski’s inequality follows from eq 5 through the use
of Jensen’s inequality:

G(E) — G(&) < (W 50y, (6)

Alternatively, the use of a cumulant expression provides the
second-order cumulant (SOC) expression

G(&) — GlEg) = (W), = JAIW ), — (W “0p)
@)

which is surprisingly accurate for small nonequilibrium
processes or environments with a Gaussian response.**-*->*

2.3.2. Adaptive Scheme for Jarzynski’s Equality. As will
be seen below, the application of the Jarzynski equality for
the extended motion of a finite number of NPY unfolding
trajectories provides a very weak upper bound to the PMF.
In fact, it is so weak that the cumulant expansion of eq 5
presents a dramatically large deviation between the second-
order cumulant and the exponential average, as demonstrated
in Figure 8. In order to treat such extended systems, we have
developed an adaptive version of Schulten’s algorithm*’ in
which the Jarzynski equality is applied through a series of
shorter steps. It is adaptive in the sense that the initial
configuration for a given step is obtained (or adapted) from
the trajectories of the previous step.

The overall unfolding path is initially partitioned into N
steps marked by its end points, &y, &1, ..., §y. The ith iteration
is initiated at §;—; and I';—; while the bath ®,_; is sampled
from the appropriate canonical ensemble. Each such bath,
@)5‘“5’*1(;,-_1), leads to M trajectories labeled by a for the &;
— &;—y process. This, in turn, leads to a distribution of values
in the work W5 -'(¢), environment I~ 5'(r), and bath
O5 51(7) for times ¢ within the ith step. At the end of the
iteration, the average work W5 5(;) is computed according
to the Jarzynski equality (eq 5). There then exists a trajectory
o for which its work W5 5-1(r,) is closest to the average
work W‘Ei‘_‘gf*‘(t,-). The initial value of the environment I'; for
the (i + i)th iteration is then taken to be the corresponding
Fgf_é'*'(ti). Meanwhile the algorithm is initiated with values
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Figure 2. lllustration of the adaptive scheme applied to a
system where the unfolding path is divided into two steps (with
10 trajectories o each). Black solid curves are the work for
each of the 10 trajectories at each step. The PMF along a
given substep is shown with a thick-red highlighted black-
dashed cure. The right y axis tick marks are labeled for the
second-step work trajectories with the 0 position located at
the final average work value of the first substep. The left y
axis tick marks are labeled for both the first step work
trajectories and the overall PMF. (This figure is drawn for
illustration purposes only and is not based on real physical
data.)

(&0, T'o) matching the initial structure of the system and
environment. In the case of NPY, this amounts to the crystal
structure of the entire protein, while & refers only to the
constrained angle spanned by the helix and tail.

A proof of this algorithm begins by considering the
application of the adaptive procedure to divide a single step
into two substeps, as illustrated in Figure 2, along a specific
unfolding path A for the corresponding system variables &.
For simplicity, but without a loss of generality, we suppose
that the system is carried along by a nonequilibrium pro-
cess from state & = 0 at initial time O to a final state £ = 1
at a final time 7. For each of M realizations labeled by a
of the 1 < 0 process, the trajectories of the environment
'y (t) and the bath ©L°(f) can be formally constructed.
The work done along each of these trajectories is
Wa O[T %), O °(n), Ty °(0), Oy °(0)] as specified by eq
3. The PMF of this process is

AG"O = - %1n<e‘ﬂw*f">a ®)

where the average is taken over the M realizations starting
with the same initial & and I'y and various initial bath
configurations @40 °).

The single step can now be partitioned into two steps in
which the system is stopped at an intermediate time ¢ and
the corresponding position &’. For each of the original M
trajectories in the 1 < O process, this partitions the work
into two components:

We " = HFIT, (0.0 (0] — HE'[T,(0). 0 (0)]
(%a)
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Wy = BP0, 0,7 0] ~ BP0, 0,7 )]
(o)

from which the free energy change for the first step can be
easily obtained using Jarzynski’s equality

AG.. g = — %m@‘f’w‘é‘ﬂ% (10)

For the second substep, however, each trajectory speci-
fied by eq 9b starts at a different value of the environment,

« (). We now introduce a &<&’ process during which
&’ is held fixed and the environment @g(¢’) relaxes in time
7 from O to 7, for some arbitrary final time 7,, which is
likely different for each trajectory o.. The work to move
the system from the state at the end of the process
described in eq 9a along this &<—&” process is

AW = HPITH(), Of(r)] — HPTE @), 05 )]
(11)

and the work to return to the final point of the 1 < 0
process is

W = BT S (0,0, (0] — HPITE(), O3]
(12)

The &<—&’ process can be allowed to propagate for as
long as it takes for I'¢*(#) to be equal to some <)
which is independent of a. The existence of such a
common end point is assured if the process is ergodic and
the system is found in a single local basin of attraction.
The requirement of ergodicity is a weak constraint given
that the environment is coupled to a bath. The requirement
for a single basin is also weak because the environment
must access all possible such basins with zero-work paths.
This motivates a new path for a restricted 1<—&" process
starting at the fixed end point '), and its work is
given by

W' = HPE (0,04 (0] — HPT (1), 0,5 ()]
(13)

where the stochastic ©L (1) has replaced the formally
propagated Og(t). That is, the bath decoherence time is
sufficiently fast so that the detailed propagation can be
ignored while the initial bath @, (¢') in the 1-—&’ process
is Gaussian random. The PMF of the restricted 1—¢&’
process is

AGTE = —%m@‘ﬁwﬁ‘*&}a (14)
The average in eq 8 can thus be written as
— 10, — 1—&' E'—E E—0

<C LWE >a — <C PIWETE AW s +W5 }>a (15)

where it should be noted that the sum in the exponent in
the RHS is not equal to W5 °(¢), nor is the trajectory the
same after /. However, the averages are equal because
they are both nonequilibrium 1 <= O processes between
the same initial and final points satisfying Jarzynski’s
equality. Meanwhile, the work in the &<—&" process is
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Figure 3. (a) A backbone ribbon diagram of NPY shown in brown with the helix emphasized by the thick ribbons as usual. The
residue, ALA12, at the turn is shown in magenta and acts as the hinge. Pairs of residues that are in contact in the folded NPY
and whose relative distances and angles are tracked in the following are color-coded as in the following scheme: black for TYR1
and ALA31, red for LYS4 and TYR27, green for PRO5 and LEU24, blue for ASN7 and TYR20, and yellow for PRO8 and ASP16.
Note that residue positions 14—31 correspond to the helix. (b) The unfolding path is illustrated on the right, wherein the helix
and hinge regions are held fixed while five images of the tail are overlaid. The PRO5 residue, which is explicitly used for steering
relative to the fixed residues LEU24 and ALA12 (shown in black), is shown in five different colors along the unfolding path: red

— magenta — yellow — green — blue.

zero because the system was allowed to relax freely.
Hence,

“BWEN o BIWETEWETO)
(e Yo (e_ﬁwﬂlkg, Z(; - 16)
=7 D x e )y

The second equality follows from the fact that the
trajectories in the 1<—&” and &~—0 processes are uncoupled
and independently sampled. Combining eqs 8, 10, 14, and
16, we obtain the desired result:

AGT? = AG"F + AGFT? (17)

where the initial value of the environment T''"¢(7) at the
beginning of the 1<—&” process, in principle, can be chosen
to be any arbitrary (but the same) state that is accessible to
a &<—&’ process. However, the choice of that intermediate
state will affect the accuracy and convergence of the
approach insofar as better choices would be more easily
accessible and thus require less numerical relaxation in the
evolution of the 1<—&” process. The best such choice is one
that corresponds to a typical structure (not the minimum
energy state) associated with the nonequilibrium process. To
this end, we choose I''"¥(#) according to the TL5(¢)
corresponding to the trajectory o, which minimizes the work
difference, IAGS™ 0 — W5 °(¢)\.

Repeated application of eq 17 and the associated proscrip-
tion for the choice of intermediate environment variables I"
for N steps gives rise to the desired final expression for the
adaptive free energy difference:

N
AG = D AGD (18)

i=1

where i labels the corresponding steps. In the limit that the
“environment variables” are empty—i.e., that the dimension-
ality of the I' space is zero—the adaptive procedure reduces

to the use of the Jarzynski equality with the additivity trivially
arising from the fact that the free energy is a state function.

In so far as the bath has been assumed to be Gaussian,
the adaptive procedure should fail if the second-order
cumulants in the work of a given set of trajectories begin to
be nontrivial. As is shown below, the adaptive procedure
does indeed satisfy this requirement.

2.3.3. Implementation of the Method. In this work, steered
MD simulation is performed by pulling PROS at a constant
velocity relative to the o helix on NPY. The choice of
PROS is motivated both by experiment and computation.
It has been previously reported that amino acids 1—4 of
NPY (TYRI1 to LYS4) form salt bridges with correspond-
ing receptors.” Recent studies have indicated that binding
hot spots at protein—protein interfaces exhibit high
frequency fluctuation.’® This suggests that the four
residues from TYRI1 to LYS4 of the NPY tail fluctuate
faster than the other tail residues. Therefore, the choice
of PROS5, rather than one of these other residues, allows
us to drive the unfolding of the semirigid tail (including
residues PROS to ASP11) while allowing the residues
from TYR1 to LYS4 to fluctuate freely. Meanwhile the
helix must be represented by at least two fixed points so
as to define the requisite hinge motion. These residues
are LEU24 on the o helix and ALA12 on the hinge
connecting the helix to the polyproline tail. The con-
strained system can therefore be designated through two
variables: the LEU24—ALA12—PROS5 angle and the
ALA12—PROS5 distance.

The external forces that carry the system along the
unfolding path, &(z,), are imposed by way of a predefined
potential H’(&(z,); A). With the addition of this new
potential, the extended time-dependent Hamiltonian, H**",
becomes

H™(z,©:4) = H°(I,0) + H'(E(Z):A)  (19)
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where
HI(EG)A) = SME &) = 2F 20)

for a specified time-dependent process A(7). In the case
of NPY, the pulling process is staged in N linear steps so
as to approximate the circular unbinding process in a
coordinate frame in which the center of mass of the hinge
(ALA12) is the origin. The position of the center of mass
of PROS5 7 encodes the radius and angle of the system
&.(zy). Thus, for each step i, the auxiliary potential in eq
20 becomes

U(F) = %k[?(t) — (7, + vl (21)

where 7; is the position of PROS5 at the beginning of the
interval, v; is the velocity to move the particle to the end
in the fixed time step, and 7; is the direction between the
initial and final positions of PROS5. The position 4; = (7;
+ vin,t) can be associated with an auxiliary particle (or
dummy atom) that follows smoothly the prescribed
unfolding path. As it does so, it exerts a work on the
system & that is given by

AW = [" Feipdi (22)

where the force F; = —VU(&E(z,)) is related to the
corresponding potential of eq 21. The corresponding free
energy change, AG™°, at time ¢ within the ith interval
can now be calculated using the adaptive work expression
in eq 18, i.e.,

i—1
e_ﬂAGr—O — <e_ﬁAWr(’)>i % H<e_ﬁAWi(5)>i (23)
=1

where the subscript on the angle brackets denotes the
averaging over the trajectories in the corresponding
interval.

2.4. Transition State Theory and Rates. The experi-
mental results, unfortunately, do not provide a potential of
mean force that can be used to compare directly to the
computational work. Instead, we use the relative stability of
the folded and unfolded states (as suggested by the calculated
AG") to compare to the experimentally known stable
structures. In addition, the rates of the unfolding and folding
processes can be determined using transition state theory for
the PMF determined along the unfolding path. These will
be compared to the findings from both the molecular
dynamics trajectories and experiment.

The simple transition state rate is

kyT _AGH
K= T € kgT (24)

where AG* is the free energy barrier of the transition.
Although much work has been done to go beyond this simple

estimate,”’ % it is reasonably accurate for the order of
magnitude of the rate.
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Figure 4. (Bottom) Average time-dependent displacements
as NPY unfolds at 500 K, shown for several tail—helix residue
pairs defined in Figure 3 using the same labeling scheme.
(Top) Corresponding time-dependent angles spanned by a
given pair of residues with respect to ALA12.

3. Results and Discussion

3.1. Identifying the Unfolding Path of NPY. Unfolding
of NPY was first investigated through unconstrained MD
simulations. MD trajectories were propagated using NAMD
with the CHARMM force field in an explicit water solvent
(TIP3P). At each of several temperatures, 300, 367, 433, and
500 K, 50 independent free MD simulations were integrated
for 1 ns. At low temperatures, no unfolding was observed
within the 1 ns observation window of the trajectories (not
shown). At 500 K, all of the 50 generated trajectories
unfolded in less than 1 ns.

Detailed analysis of the time dependence of the helix—tail
separation in the 500 K unfolding trajectories reveals a hinge-
like motion. The distance between the five pairs of residues
initially in contact within the folded NPY are shown in the
bottom panel of Figure 4. Pairs of residues farther from the
turn (ALA12) move to more distant positions as the protein
unfolds. All but the farthest residue pairs sweep a similar
angle relative to the turn (ALA12), as shown in the top panel
of Figure 4. This suggests that the tail hinges away from the
helix about the turn during the unfolding process. It does
not, however, follow this path linearly. The farthest residue
pairs violate the quantitative agreement because the residues
at the end of the tail are much more mobile and exhibit large
fluctuations in position.

Both experimental®®®' and computational®® studies have
suggested that residues 1—4 of the NPY tail form a
pharmacophore that plays an active role during NPY binding
to receptors. As postulated by Ertekin et al.,’® interface
residues that are in close contact with binding protein
residues have a higher packing density and exhibit high
frequency fluctuation.’® The dynamics of the tail shown in
Figure 5 are in good agreement with these previous reports.
The part of the tail that is proximal to the hinge (including
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Figure 5. (Top and bottom) Radius of gyration and end-to-
end displacement as a function of simulation time of two
different segments of the NPY tail: ALA12 to TYR1 (black)
and ALA12 to PRO5 (green). [cf. Figure 3b for the identifica-
tion of the residues.]

all the residues up to PROS) have nearly similar geometric
properties (in terms of the length and radius of gyration)
through the entire unfolding process. The rest of the tail,
however, exhibits a significant geometric change through the
unfolding process. It appears to be relaxation of the tail end
toward a more compact structure in the vicinity of the
proximal part of the tail.

The unfolding path thus appears to be primarily following
the unhinging of the proximal part of the tail about the
ALA12 hinge. Through this process, the tail appears to be
nearly rigid up to PROS, while the more distant residues
are much more mobile. Hence, PROS5 is associated in the
remainder of this work with the unfolding (reaction) path
illustrated in Figure 4. Following Daggett and co-workers,>
we therefore suppose that this unfolding path is followed
not just at the elevated temperature of 500 K but also at
experimentally accessible temperatures.

3.2. The PMF along the Unfolding Path. Our objective
is to learn about the dynamics of NPY at temperatures
relevant to the experimental systems. The temperature
accelerated MD simulations provided us rates only at the
locally stable temperature of 500 K. They also suggested an
unfolding path along which we can calculate the PMF at
lower temperatures for the purpose of obtaining relative rate
information as will be done in the next subsection. The PMF
must be calculated at 500 K for comparison with the MD
simulations. For the lower temperature, we chose 310 K, as
it is the body or in vivo temperature and is the temperature
at which several experimental studies have explored the NPY
dynamics.'”-'®%? The determination of the PMF at these two
temperatures is nontrivial because the models are quite large
(consisting of 40 123 atoms), for which a single nanosecond
trajectory takes approximately 100 h on one computer core.
Nevertheless, the nonequilibrium SMD approaches described
in the previous section were used to obtain the PMFs. The
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Figure 6. The average displacements in the system shown
along the parametrized path 1 for the adaptive SMD at 310 K
and 500 K. The displacements &, = (r, 0) fixed by the
nonequilibrium process correspond to the radial distance r of
PROS5 from the hinge (ALA12) and the angle 6 spanned by
the PRO5—ALA12 and LEU24—ALA12 vectors.

nonequilibrium simulations were realized using NAMD with
the CHARMM force field for NPY in an explicit water
solvent (TIP3P). All standard configuration parameters were
the same as in the unconstrained MD simulations. The PMFs
determined by either SMD approach required 110 h running
on 48 2.33 GHz Intel 64 CPUs for 144 1-ns trajectories at
a cost of 5280 CPU hours.

Steered MD trajectories have been obtained at a high
temperature (500 K) as well as at body temperature (310
K). The unhinging of the tail was steered by pulling PRO5
(coupled to a dummy atom through a spring constant as per
eq 20) relative to the virtually fixed residues ALA12 at the
turn of the loop and LEU24 on the a helix. The unfolding
path, which the dummy atom follows, is a discretization of
the pseudocircular path shown in Figure 3b with each of the
N finite steps taken to be linear. Specifically, the external
force was applied on PROS5 to steer it from an initial
configuration of the PRO5S—ALA12—LEU24 angle 0y, and
radius rinita to the final values, Ogna and rana. At 500 K, Oinigial
= 24.36° and Finitial — 16.09 A At 310 K, emma] = 24.41°
and riiga = 15.49 A. At both temperatures, the final
configuration is Ogpy = 144.4° and rpy = 14.3 A. The initial
configurations for the two temperatures differ because each
was prepared from equilibration runs at the respective
temperatures. All control parameters, such as the pulling
velocity (v = 33 A/ns) and the spring constant (k = 7.2 kcal
mol ! A_z), were kept identical to each other so as to render
comparable results. The degree to which the PROS residue
followed the unfolding path through the SMD simulations
is shown in Figure 6. On average, both 6 and r follow the
linear displacement well, as expected for a constant velocity
pulling SMD simulation. The fluctuations around the average
are small and also consistent with this conclusion.

At each temperature, 144 independent SMD trajectories
were generated. (The number is 144, not 100, because of
technical reasons related to the architecture of the particular
computer cluster and the number of simultaneous trajectories—
three—that could be run per core without increasing the wall
clock time.) This number was sufficient to converge the
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and the PMF (in thick-red highlighting of a black-dashed curve)
obtained using the Jarzynski equality displayed as a function
of the parametrized unfolding path at 500 K (top panel) and
310 K (bottom panel).
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Figure 8. The PMF obtained using Jarzynski’s equality (in
red, cf. eq 5) and second-order cumulant expression (in black,
cf. eq 7) obtained from a standard SMD calculation with 144
trajectories displayed as a function of the parametrized
unfolding path at 500 K (top panel) and 310 K (bottom panel).

adaptive SMD trajectories and therefore serves as a good
foil for the comparison of the two methods utilizing a similar
amount of computational resources. Figure 7 shows the work
and the averaged PMF using Jarzynski’s relation at both 500
K (top) and 310 K (bottom). There are only a limited number
of trajectories contributing to the PMF of the system at each
temperature. This suggests a need for many more trajectories
in order to converge the Jarzynski average. Indeed, the
original deca-alanine in vacuum SMD PMFs calculated by
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Figure 9. The work for 144 individual trajectories a (in black)
and the PMF (in thick-red highlighting of a black-dashed curve)
obtained using adaptive SMD displayed as a function of the
parametrized unfolding path at 500 K.
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Figure 10. The work for 144 individual trajectories a (in black)
and the PMF (in thick-red highlighting of a black-dashed curve)
obtained using adaptive SMD displayed as a function of the
parametrized unfolding path at 310K.

the Schulten group*® required over 10 000 trajectories on
this much smaller system.

The lack of convergence of this approach (using a limited
number of trajectories) is also illustrated by the comparison
of the PMF between Jarzynski’s average and the second-
order cumulant expression shown in Figure 8. The two
expressions are equal in the limit that the work distribution
is Gaussian because of the well-known Marcinkiewicz’s
theorem.®” The lack of agreement between the two expres-
sions is due both to the use of too few trajectories and also
the fact that the observed trajectories were able to stray far
from the relevant configurations. The consequence of the
latter is that the statistics of the work contributions are far
from Gaussian, and hence the second-order cumulant expres-
sion deviates greatly from Jarzynski’s average.

The adaptive SMD method described in section 2.3 pre-
empts the work distribution of such high barrier PMFs from
losing their Gaussian nature by partitioning the unfolding
path into several steps over which the PMF undergoes
smaller changes. For the curved unfolding path illustrated
in Figure 3b, we found convergence when we used 20 steps
and a mere 144 trajectories per step. As noted earlier, the
total computational cost is almost the same, excluding the
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Figure 11. The PMF obtained using Jarzynski’s equality (in
red, cf. eq 5) and second-order cumulant expression (in lack,
cf. eq 7) obtained from an adaptive SMD calculation with 144
trajectories displayed as a function of the parametrized
unfolding path at 500 K (top panel) and 310 K (bottom panel).
Note that the black curves are nearly entirely covered by the
red curves and hence not very visible.

negligible cost required for trajectory comparison at the end
of each step. As before, 144 independent adaptive SMD
trajectories were generated for each of the two temperatures,
310 and 500 K.

The work and the averaged PMF using adaptive SMD (eq
18) are shown in Figures 9 (500 K) and 10 (310 K). Unlike
in the results for the standard SMD simulations shown above,
the PMFs are not dominated by the lowest energy trajectories.
On the contrary, the PMF for each step has contributions
from several trajectories. The results obtained for the PMF
using the adaptive SMD method (cf. eq 18) with Jarzynski’s
equality (cf. eq 5) shown in Figures 9 and 10 are reproduced
in Figure 11. Therein, the PMFs obtained with the second-
order cumulant expression (cf. eq 7) are also shown. The
agreement is remarkable, as the differences are not visible
at this level of resolution. Though not shown, the number
of sampled trajectories was doubled, leading to no significant
change in the converged PMFs. Thus, the adaptive nonequi-
librium process appears to result in a better estimate of the
PMF with a limited number of trajectories, i.e., computational
resources.

The PMFs in Figure 11 also provide information about
the energetics of the unfolding process of NPY at the two
temperatures, 310 and 500 K. The barrier heights to unfolding
at 310 and 510 K are 24 and 17 kcal/mol, respectively. The
7 kcal/mol lowering of the barrier height at the higher
temperature presumably results from the fact that the
orthogonal degrees of freedom have a higher frequency at
the folded state than at the barrier to unfolding. The
difference is even more dramatic when one compares the
ratio of the barrier height in units of kg7. At 310 and 510 K,
these ratios are 40 and 17, respectively, which suggests that
the rates at 310 K are several orders of magniture slower
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than at 510 K. As NPY had exhibited only partial unfolding
at the high temperature, it is therefore not surprising that
the low temperature MD simulations did not unfold within
the 1 ns observation window. In addition, the folded state
has a lower PMF and is therefore predicted to be the more
stable form for monomeric NPY at 310 K.

3.3. The Folding and Unfolding Rates of NPY. The
barrier height for the transition from the folded to unfolded
conformations of NPY has been found to be 24 and 17 kcal/
mol for 310 and 500 K, respectively. From these activation
energy values, the rates have been calculated as 5.1 x 107>
s~ 'and 5.5 x 10° s~ " again for 310 and 500 K, respectively.
The inverse of these rates corresponds to a lifetime for the
NPY unfolding transition. At the elevated temperature (500
K), this lifetime is 1.8 us and is consistent with the fact that
the NPY trajectories would explore the unfolded space within
1 ns, as seen in the MD simulations. At body temperature
(310 K), this would suggest a lifetime of over 5 h, which is
consistent with the fact that none of the low temperature
NPY proteins unfolded during the MD simulations.

4. Conclusions

We have developed an adaptive algorithm extending the
Schulten—Jarzynski SMD method for the calculation of
PMFs when the subsystem is dragged across long nonlinear
paths. In such cases, the PMF can span many kg7 ’s, leading
to the sampling of nonequilibrium trajectories with work
functions that fluctuate over a very large energy range.
Consequently, only a small fraction of the trajectories
generated from the SMD contribute nontrivially to the
Jarzynski average. In order to numerically converge this
average, one then needs to generate a large number of
trajectories, which can be cost prohibitive. The adaptive
algorithm allows one to break up the SMD calculation in a
series of steps. The free energy difference across each such
step is much smaller, and thereby allows convergence of the
Jarzynski average with significantly fewer trajectories. In this
sense, the adaptive algorithm is not formally better than the
standard approach, but it is significantly more numerically
efficient.

The SMD approach using the Jarzynski equality has been
implemented experimentally in molecular force pulling
experiments by several groups*®*’ with the underlying theory
having been recently clarified by Zimanyi and Silbey.’* The
numerical success of the adaptive technique developed here
could also be extended to such molecular force pulling
experiments. Instead of using single constant velocity force
pulling, the adaptive procedure would suggest the use of
staged (or stepped) force pulling events. The pauses between
the stages need only be held long enough so that the
environment to the constrained system can relax (while
applying zero work.)

The unfolding path of NPY has been suggested by
temperature accelerated MD simulations to be the unhinging
of the polyproline tail away from the o helix about the turn
(near ALA12.) The NPY tail maintains its overall shape
between PROS5 and ASP11 while unhinging away from the
NPY helix. As the NPY unfolds along the path, the first four
N-terminal residues (TYR1 to LYS4) fluctuate freely when
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no biasing force is applied on them. This observation is
consistent with earlier reports which hypothesized that these
four residues on the polyproline tail of NPY form a
pharmacophore at the NPY —receptor interface during NPY
bioactivity.” This was earlier justified by the fact that
protein—protein interfaces have been seen to be enriched by
the presence of high frequency fluctuating residues.’® The
observation that this unfolding process can be reduced to a
dominant one-dimensional pathway is not uncommon. Sev-
eral groups®®* have reported the possibility of such a
simplication if the dynamics are dominated by passage across
a single barrier, as we have seen here for NPY.

The potentials of mean force along the folding path
provide a more detailed view of the dynamics. This was
possible because of a generalization of SMD (also known
as force-biased simulations) using the adaptive scheme
introduced in this work. The barrier heights and associated
rates of the NPY unfolding transition at an elevated
temperature (500 K) and the in vivo temperature (310 K)
agree well with the numerical MD simulations (reported
here) and those authors'®™!® which have proposed the
stability of PP-fold on the basis of their experimental
findings. At the in vivo temperature, we have determined
an unfolding rate for NPY on a time scale longer than
5 h. The typical single-domain protein folding/unfolding
time scale is a few microseconds at the fastest and a couple
hundred microseconds at the slowest.®> We thus conclude
that at 310 K monomeric NPY does not unfold. This
conclusion is consistent with our preliminary uncon-
strained MD simulations in which NPY did not unfold at
temperatures up to 433 K. The fact that the unfolded NPY
state has a higher free energy than the folded structure
also suggests that the NPY monomer in solution is folded
in the pancreatic—polypeptide (PP) fold. This result is also
consistent with the experimental hypothesis that the NPY
dimer is biologically inactive in solution because the tail
moves away from the PP-fold.'® This indirectly suggests
that the biological activity of the NPY monomer results
from the stability of the folded structure in agreement with
the energetic stability found in this work. Recently, Bader
et al.?? reported that the micelle-bound form of NPY
demonstrates a less ordered conformation than the PP-
fold. In this less-ordered conformation, the NPY tail is
observed to be fluctuating (Figure 3 in Bader et al.) while
the a-helix remains stable. Our results suggest that this
is due to the specific contacts, formed between micelle
and side chains of the NPY o-helix, replacing the
favorable polyproline tail and o-helix contacts observed
in the PP-fold.
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Abstract: Nonbonded interactions between molecules usually include the van der Waals force
and computationally expensive long-range electrostatic interactions. This article develops a more
efficient approach: the effective-interaction multistate empirical-valence-bond (EI-MS-EVB) model.
The EI-MS-EVB method relies on a mapping of all interactions onto a short-range and thus,
computationally efficient effective potential. The effective potential is tabulated by matching its
force to known trajectories obtained from the full-potential empirical multistate empirical-valence-
bond (MS-EVB) model. The effective pairwise interaction depends on and is uniquely determined
by the atomic configuration of the system, varying only with respect to the hydrogen-bonding
topology. By comparing the EI-MS-EVB and full MS-EVB calculations of several equilibrium
and dynamic properties important to hydrated excess proton solvation and transport, we show
that the EI-MS-EVB model produces very accurate results for the specific system in which the
tabulated potentials were generated. The EI-MS-EVB potential also transfers reasonably well
to similar systems with different temperatures and box sizes. The EI-MS-EVB method also
reduces the computational cost of the nonbonded interactions by about 1 order of magnitude in

3039

comparison with the full algorithm.

1. Introduction

An empirical force field must either explicitly or implicitly
account for all of the electrostatic interactions between
charged particles. The long-range electrostatic interaction,' >
which decays as an inverse function of the interparticle
distance r, is a crucial element of many molecular simula-
tions—especially for highly charged biological systems such
as DNA.°"® Reliable and accurate calculations of the
Coulomb force are possible using lattice summation methods,
including the original Ewald summation,” particle—particle
particle—mesh (P3M),'!! and particle—mesh Ewald (PME)
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* Northwestern University.
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algorithms.'? Numerous simulations based on these tech-
niques have produced results in good agreement with
experimental data. Even with carefully chosen parameters,
however, the computational cost of the original Ewald
summation is O(N *2),'* with N being the number of charged
particles in the system. By employing the fast Fourier
transform, P3M and PME significantly accelerate long-range
electrostatic calculations and reduce the cost to O(N log
N).'%!! Although all three methods are much faster than a
direct evaluation of all possible pairs, they are still very
computationally expensive for large systems,'* and thus may
not be well suited for highly scalable computations.

Fast multipole methods (FMMs), an alternative approach
to the Ewald algorithms, are based on the multipole expan-
sion of the electrostatic potential.'””>~'® Although their
asymptotic computational scaling is claimed to be O(N),
much better than that of particle—mesh methods, in a trial

10.1021/ct100318f © 2010 American Chemical Society
Published on Web 08/31/2010
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conducted by Pollock and Glosli, the latter actually outper-
formed FMMs for all systems studied.'” Furthermore, it is
not easy to obtain a reasonably good conservation of the
total system energy using FMMs. A very high-order expan-
sion must be used, at the cost of significantly more CPU
(central processing unit) cycles. However, as pointed out by
one of the reviewers, some recent progress has substantially
reduced the prefactor implicit in the O(N) notation,'*"
making the improved FMMs quite competitive.

Among the various ways to improve the efficiency of long-
range force calculations, the most straightforward and conve-
nient one is to truncate the interaction beyond a certain (usually
fairly short) distance. In other words, in this approach, any
nonbonded forces between particles separated by more than a
certain cutoff distance are simply neglected.?'** At the cutoff
distances typically used in simulations, however, the long-
range force is not yet sufficiently small to be ignored. The
resulting discontinuity is known to produce severe artifacts
in various properties of the simulated systems.?*>® Although
the discontinuity can be diminished by smoothing or shifting
functions, such methods cannot completely remove the
artifacts.’’ 40

Alternatively, interactions between particles at large length
scales can be treated as a homogeneous dielectric medium
in the mean-field sense. The contribution from all molecules
beyond the cutoff distance can then be approximated using
a Barker—Watts reaction-field (RF) correction.>*?*#! =45 The
problem with this approach is that many systems of interest
(e.g., aqueous solutions of large proteins) exhibit intrinsically
heterogeneous dielectric properties. In such cases, RF cor-
rections with a short cutoff will induce significant artifacts.
These errors can be reduced by setting a large cutoff, but
this solution increases the computational expense, thereby
limiting the applicability of the RF method.

The above summary is consistent with the concept that
expensive, explicit computations are both necessary and
inevitable for an accurate description of long-range interac-
tions. However, recent thinking suggests that the effective
electrostatic interaction in condensed systems might decay
substantially faster than an inverse power of r. Indeed, several
short-range potentials have been constructed that appear to
account for the long-range electrostatic interaction.**~*® The
damped, force-shifted (DFS) potential*® is one good example;
not only is it computationally efficient, with O(N) compu-
tational cost, but it satisfactorily reproduces some thermo-
static and dynamic properties for a variety of systems,
including argon in water, liquid water, crystalline water, NaCl
crystals, and NaCl aqueous solutions. A weakness of the DFS
potential is that some of its key variables (such as the
damping parameter itself) can be optimized only by trial and
error. Moreover, the fact that it relies on a predefined
analytical function might limit the DFS potential’s ability
to represent the “best” effective short-range interaction in a
wide range of systems.

Very recently, a different and systematic method for
determining the optimal effective short-range potential was
developed.*®**° This method is called coarse-graining in
interaction space (CGIS). The goal is to minimize differences
between the forces generated by a candidate effective short-
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range potential and those generated by the full Coulomb
potential. This innovative approach represents a “bottom-
up” strategy, fundamentally different from the more common
“top-down” strategies described previously. This force-
matching (FM) algorithm®®! takes into account the effects
of the full Coulomb interaction, generating a statistically
accurate effective®*’ potential. Furthermore, the new po-
tential need not be a predefined analytical function. This
method has successfully reproduced several important struc-
tural, energetic, and dynamical properties of bulk water
systems.*® The subsequent work by Shi et al.* took the
theory a step further by analytically demonstrating that the
effective short-range force approaches zero naturally at
the FM cutoff and by deriving its corresponding analytic
approximation.

Turning now to a more specific focus, the multistate
empirical-valence-bond (MS-EVB)*? 7 method represents
a significant theoretical and computational advance toward
understanding proton solvation and transport (PS&T). This
phenomenon is critical to many chemical, biochemical, and
biophysical systems. The MS-EVB method has provided
statistically reliable and accurate descriptions of excess
hydrated proton behavior in a wide variety of environments,
including small water clusters®® and the bulk and interfacial
water phase,”*>>~” the aquaporin channels,**®' the influenza
A virus M2 channel,®? cytochrome ¢ oxidase,®® and liquid-
phase imidazole.** The MS-EVB approach describes proton
transport as a multipathway and multistep reaction, wherein
distinct reactant-like (or product-like) intermediates with
different chemical and hydrogen-bonding topologies are
represented as individual states of an MS-EVB Hamiltonian
matrix. The diagonal elements of the matrix represent the
diabatic energies of the MS-EVB states, and the off-diagonal
elements provide the coupling between any pair of states.
The MS-EVB method is a sort of multistate or multicon-
figuration molecular dynamics (MD) approach that allows
chemically reactive processes such as Grotthuss proton
shuttling®®’ to be modeled.

After diagonalization of the MS-EVB Hamiltonian and
identification of the eigenvector with the lowest eigenvalue,
the system nuclei are propagated with MD in accordance
with the Hellmann—Feynman theorem. Empirical potentials
and atomistic forces (hereafter denoted E&F) need to be
calculated for each element in the EVB matrix, except for
those off-diagonal elements that correspond to noncoupling
MS-EVB states.’>>* In aqueous solutions, for example,
approximately 30 MS-EVB states and roughly the same
number of MS-EVB coupling pairs are typically required to
describe the delocalized excess proton charge defect and to
satisfactorily conserve total system energy. Thus, one should
expect about 60 computationally expensive long-range
electrostatic lattice summations to be carried out for each
time step. This calculation is the dominant source of CPU
cycles in an MS-EVB calculation. A new approach for
accurately and efficiently evaluating the long-range electro-
static interactions in the MS-EVB method is therefore highly
desirable for many interesting applications, especially those
involving an implementation within a highly scalable com-
puting environment.



Multistate MD with Effective Interactions

The CGIS algorithm folds long-range electrostatic interac-
tions into short-range effective potentials.*** In the present
study, we demonstrate that this algorithm can be generalized
to greatly accelerate MS-EVB calculations by simplifying
most of the nonbonded interactions. This demonstration is
important because proton transport as described by the MS-
EVB model has various exponentially sensitive properties
(such as diffusion barriers) that might not be properly
modeled by more ad hoc effective interaction schemes. For
a given atomistic configuration, distinct MS-EVB states differ
only in their hydrogen-bonding topology. Thus, once the
E&F have been determined for one EVB state, those of other
states can be calculated conveniently and rapidly by identify-
ing the few atom pairs that differ between the states. It is
therefore not surprising that such short-range effective
potentials are a particularly efficient tool for MS-EVB
calculations. As will be demonstrated later, this “effective-
interaction” MS-EVB (EI-MS-EVB) approach can substan-
tially reduce the cost of nonbonded calculations in the MS-
EVB calculations while producing structural, energetic, and
dynamical properties comparable to those of the original full-
potential (FP) MS-EVB model. More importantly, the
improvement in computational efficiency becomes pro-
nounced in larger systems.

The remaining sections of this article are organized as
follows: Section 2 provides an overview of the CGIS FM
algorithm and the MS-EVB methodology, followed by a
detailed explanation of the construction of effective short-
range potentials. Section 3 compares some physical properties
of systems simulated using the EI-MS-EVB method and the
regular (FP) MS-EVB method and discuss the efficiency of
the algorithms. Conclusions and future directions are given
in section 4.

2. Methods

2.1. Force-Matching Algorithm. The FM algorithm®*!
has previously been used to construct short-range effective
potentials via the CGIS methodology.**** Given that the
system itself is not coarse-grained and that nonbonded
atomistic potentials are usually pairwise and additive, this
procedure can produce very accurate effective potentials.
Indeed, this accuracy has been demonstrated for various
systems.*®

Briefly, the optimal parameters {g,} of an effective short-
range interaction can be systematically derived from a known
trajectory by variationally minimizing the residual function

1 ore ef!
L)) = 5 2IFL = Fiil(g,rlf
il

In this formula, N is the number of atoms in the system,

—ref

F;; is the known force acting on atom i in frame [ of the
reference trajectory, and

NP
Filgnrd = 2, 60078,
d=1

is the effective force calculated from the configuration r*
given the parameter set {g,}. In the effective force formula,
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N, is the number of elements in {g,}, r" represents the
coordinates of the atoms, and qbfl(/’) is a vector whose
elements depend on the system configuration. Beyond the
cutoff distance r., the effective force Figf(gm,rc) is defined
to be zero. A more detailed description of the force-matching
procedure can be found elsewhere.*®" It is worth emphasiz-
ing that, because 7*:{6,1 is deduced from a real MD trajectory,
it includes contributions from the whole system. Even though
the effective force 72§f(g,n,rc) includes contributions only
from particles within a spherical region around atom i, it is
constructed to imitate ffelf as closely as possible and
therefore also includes information on the long-range
interactions.

Mathematically, the residual function can be rewritten as
a multidimensional quadratic function of the parameter set

{g }65*67

X2 = ZGdd,gdgd' - 2Zbdgd + on (1)
d

dd

where
1 n n
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1 ny _ poref
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il
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Differentiating the residual function with respect to the
parameter set yields a normal system of equations from
which the effective short-range force parameters can be
determined as

@)

Ny
Z Gu8as = by (€]
d'=1

ford =1, ..., N,.

Note that ffef and fﬁﬁf(gm,rc) need not include all of the
force components. As the present work will demonstrate,
the formalism is applicable even when only part of the force
is considered.

2.2. MS-EVB Multistate MD Method. Because a hy-
drated excess proton is shared among several solvating water
molecules (charge defect delocalization), it is not appropriate
to simulate PS&T using conventional empirical force fields
with MD. In a manner similar to quantum mechanics, the
MS-EVB framework describes delocalized hydrated excess
protons as a linear combination of basis states li) correspond-
ing to distinct hydrogen-bonding topologies.’* > Given a
configuration of system nuclei x, the state function W) of a
delocalized excess proton is written as

N
W) = D c(x0li) 5)

where N is the total number of basis states and c; represents
the normalized state coefficients. The MS-EVB state am-
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plitude squared, ci%, represents the probability of finding the
system in state |i). The state function I¥) at a given instant
is determined by a Hamiltonian matrix H whose elements
h;; are typically described in terms of an empirical force field.
Given H, the ground state |W) and lowest-energy E(x)
eigenstate can be obtained by solving the eigenvalue problem

¢'He = E(x) (6)

where ¢ is the N-dimensional eigenvector with elements c;,

=1, 2, ..., N, as described in eq 5. According to the
Hellmann—Feynman theorem, the force exerted on atom i
for a given nuclear configuration can be expressed as

w) =~ T,

m,n

oh,, (x)

F(x) = —<lpo

l

2.3. Effective Short-Range Forces for the EI-MS-EVB
Model. Under a full-potential model (denoted here simply
as the MS-EVB model), the diagonal elements %;(x) of the
Hamiltonian matrix H are described by the potential energy
function™

Nuyo Nnyo Nuyo
ntra ntra,k nter,k inter,kk’
VIHO++ ZVHO + ZVHO+HO+ ZVHZO
k<k’
(3)

The term V'{I“BL represents the intramolecular potentials for
hydronium, and XN Y0 Viltk i the intramolecular potential
of the flexible, simple point-charge underlying water (SPC/
Fw) model developed by Wu et al.’> The term Y, kszo
V‘;;"g""' represents all nonbonded interactions between water
molecules, and the term V'ﬁ;gf n,0 represents the intermo-
lecular potential between hydronium and water molecules
and can be written as>

900, \" O00, \° n
|\ Roo, Roo,

H;0" H,0
Oho, \? o, \° & Dy
ey [(—) ==+ 2> = Voo, + Vi,

RHOk RHOk ne mny,
(&)

inter,k —
VH3O+,H20 = 4eo0

In addition to the standard Lennard-Jones (LLJ) and Coulomb
potentials, two repulsive terms (VG8, and Vii§,) are required
to correctly describe interactions between hydronium ion and
the water molecules in its first solvation shell. In practical
terms, the repulsive terms improve consistency with the high-
level ab initio potential energy surface. For the sake of
simplicity, only X kszo Ve and the first three terms of
V'}'I"gf 1,0 (€q9) are included in the effectlve interaction FM
procedure. The intramolecular terms Vio+ and V'I‘{m(‘; £, as
well as the repulsive terms V58, and thk, are many-body,
already short-range, and computationally efficient. They can
therefore be calculated directly from the empirical functions,
by means described in another work.>

The off-diagonal (coupling) elements /;(X) (i = j) in eq 6
are defined to be nonzero only when the hydronium ions of
states li) and |j) share a transferring proton. These elements
can be expressed as’’
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( const + VZX)A(ROO’ q) (10)
where V4, is a constant and VY, is the electrostatic potential
between the HsO," Zundel complex and the remaining water
molecules.’® The latter term is given by

H20 ex

Nuso—1
72 G

ZZZ

where q X represents exchange charges of the HsO," complex
and an is the atomic charge of water molecule k. The term
A(Roo0,q) in eq 10 is a geometric scale factor dependent on
the positions of the atoms forming the Hs0," complex. Thus,
only the exchange charge term V& is involved in the
construction of an effective short-range force for off-diagonal
terms.

Unless otherwise specified, the construction of effective
short-range potentials and all simulations (using both the EI-
MS-EVB and MS-EVB models) were carried out in a cubic
volume with 216 water molecules and one excess proton at
298.15 K. The box size was 18.621 A, yielding an average
density of 1.0 g/cm®. For thermostatic calculations, a
constant-NVT ensemble of simulations with a Nosé —Hoover
themostat® was used. For dynamical properties, the constant-
NVE ensemble was employed.

In the MS-EVB simulations, long-range electrostatic forces
were treated by Ewald summation with a relative tolerance
of 107°. A spherical cutoff of 9.0 A was chosen for the LJ
interactions. In the EI-MS-EVB simulations, the short-range
effective potentials employed a slightly longer spherical
cutoff radius of 9.24 A, which is one-half of the simulation
box size of the atomistic system for which the effective
potential is derived (i.e., the largest possible cutoff that could
be used). A leapfrog algorithm was applied to integrate the
equations of motion, with a time step of 1 fs. In total, 48 ns
of simulation data were produced, consisting of six inde-
pendent 4-ns simulations for both MS-EVB and EI-MS-EVB
cases. All simulations were performed using the DL_EVB
program,® derived from the DL_POLY package.”®

(1)

mn K

3. Results

3.1. Instantaneous Atomistic Forces. Because the present
study aims to improve the efficiency of MS-EVB simulations
without sacrificing accuracy, the short-range effective po-
tentials should be assessed in terms of force deviations
between the EI-MS-EVB and MS-EVB models for a given
configuration of the system nuclei. The force deviation AF;,
for an atom i along the x axis can be expressed as

AF, = FM,, — FP,, (12)

where the forces FM; and FP; are calculated under the EI-
MS-EVB and MS-EVB models, respectively. As all systems
in the present study are isotropic, the observed distributions
of AF; are indistinguishable along the three Cartesian axes
(data not shown). Consequently, all distributions of AF;
presented in this article have been averaged over the three
axes. The standard deviation d(AF) is calculated by the
equation
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M N
O(AF) = \/ JLW%IZ > (AF, — AF)*  (13)

where M is the number of atomistic configurations and N is
the number of atoms in the system. To ensure statistical
reliability, 6000 configurations were randomly selected from
each of the six EI-MS-EVB trajectories, which were obtained
at temperatures of 260, 270, 280, 298.15, 310, and 320 K.
The resulting AF; distributions and the corresponding O(AF)
values are shown in Figure 1. Although the wings of the
force deviation distributions are slightly wider than the
standard Gaussian, the distributions have a zero mean for
all six temperatures, demonstrating the absence of systematic
error in the effective short-range potentials. Moreover, the
standard deviations indicate that about 90% of the individual
AF; values are less than 0.5 kcal*mol™'+A~" in absolute
value. (The probability of obtaining a AF; magnitude larger
than 1.0 kcal-mol '+A™! is only about 1%.) The average
value of O(AF) is approximately 0.3 kcal*mol'+A™!, only
2% of the average force (14 kcal+mol '+A™!) exerted on
the atoms.

To further validate the effective short-range potentials,
several systems were simulated with larger box sizes at
298.15 K (but otherwise similar to those described above).
The greater volume substantially increases the number of
atoms beyond the cutoff radius. As depicted in Figure 2, the
variance of AF;, generally increases with box size, except
for the largest system with a box size of 37.106 A, which
exhibits a O(AF;,) value similar to that of the medium-sized
systems. The moderate increase is expected because the
effective short-range potentials were based solely on infor-
mation available within the original-size system, which was
relatively small. Nevertheless, O(AF) increased by only 0.11
kecal-mol ™'+ A™! (Figure 2) when the box size nearly doubled
from 18.621 to 37.106 A. Given the intrinsic limitations of
the accuracy of the underlying empirical force field, errors
in the range of a few percent can be viewed as being
essentially negligible. The effective potentials generated by
the present force-matching scheme should therefore be
reasonably transferable to other temperatures and box sizes.

3.2. Radial Distribution Functions. The solvation struc-
ture of a hydrated excess proton essentially governs the extent
of its charge defect delocalization, which can be characterized
by a radial distribution function (RDF). Figure 3 compares
the RDFs obtained in EI-MS-EVB and MS-EVB simulations.
With the exception of RDF(O*—H), where the EI-MS-EVB
and MS-EVB models deviate in the rarely sampled core
region (<3.0 A), the two approaches produce almost indis-
tinguishable descriptions of excess proton solvation in water.
The EI-MS-EVB method generates a somewhat lower
probability of finding water hydrogen atoms close to the
hydronium oxygen at short distances (Figure 3b), but this
feature is not directly related to the process of proton
transport.

3.3. Free Energy Profile of Proton Transfer. The free
energy profile of proton transfer between two water mol-
ecules can be calculated by the equation

AE(c® — ¢,)) = —RTIn[P(c,> — ¢,))] — C (14
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Figure 1. Distribution and standard deviation of the force
difference AFj as a function of temperature.
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Figure 2. Distribution and standard deviation of the force
difference AFjx as a function of box size.
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Figure 3. Comparison of the radial distribution functions
(RDFs) calculated by the EI-MS-EVB and the full-potential
MS-EVB methods. (a) RDFs of water oxygen atoms O around
the hydronium oxygen atom O*, (b) RDFs of water hydrogen
atoms H around the hydronium oxygen atom O*, (c) RDFs of
water oxygen atoms O around the hydronium hydrogen atoms
H*, (d) RDFs of water hydrogen atoms H around the hydro-
nium hydrogen atoms H*.

where a “coordinate” relevant to the proton transfer process
can be defined as the difference between the largest and
second-largest MS-EVB amplitudes, ¢% and ¢,°. The function
P(cl2 — sz) is thus the probability distribution of that
coordinate. In this expression, R is the molar gas constant
(8.314 T mol ' K™Y), T is the system temperature (298.15
K), and C is an arbitrary constant that can be adjusted to
define the point of zero free energy. Typical values for
reference®®>* 7 are ¢;> — ¢,°> ~ 0.45 for the Eigen cation
(H904+) and ¢;? — ¢, ~ 0.0 for the Zundel cation (H502+);
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Figure 4. Free energy profile of the proton-transfer coordinate
for the EI-MS-EVB model versus the full-potential MS-EVB
calculation.
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Figure 5. Temperature dependence of the proton diffusion
coefficient for the EI-MS-EVB model versus the full-potential
MS-EVB calculation.

the charge defect is more localized in the former case. As
demonstrated in Figure 4, the EI-MS-EVB simulations nearly
perfectly reproduce not only the free energy barrier of proton
transfer, but also the probability distribution of the reactive
coordinate. The central peak is slightly lower compared to
the MS-EVB case, by only about 0.02 kcal/mol.

3.4. Temperature Dependence of the Diffusion Coef-
ficient. The activation energy for proton transport, AE,, can
be described according to the classical Arrhenius equation

Dy = A exp(—AE,/RT) (15)

where A is a temperature-independent constant. By plotting
In(Dy+) against 1/7, the value of AE, can be determined from
a simple linear fit. Simulations were carried out at 260, 270,
280, 310, and 320 K to obtain the temperature dependence
of Dy+, as shown in Figure 5. On average, the deviation
between Dy+ values obtained in EI-MS-EVB and MS-EVB
simulations is about 0.03 A%/ps for all temperatures. The two
approaches are essentially indistinguishable with respect to
this property, as the error bar for Dy+ is £0.03 A%/ps. The
AE, value for the EI-MS-EVB model is 3.6 £ 0.3 kcal/mol,
whereas that for the MS-EVB model is 3.3 % 0.3 kcal/mol.
Again, the two values are statistically consistent.

3.5. Effect of Box Size on the Proton Diffusion Coef-
ficient. This section reports the transferability of the effective
short-range potentials in the EI-MS-EVB method to other
box sizes. In particular, we investigate the variation in Dy+
with system size. EI-MS-EVB and MS-EVB simulations
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Figure 6. Effect of box size on the proton diffusion coefficient
for the EI-MS-EVB model versus the full-potential MS-EVB
calculation.

were performed on cubic systems with box sizes L of 20.462,
23.447, 29.509, and 37.106 A in addition to the original
system. Figure 6 demonstrates that the error ranges of all
corresponding Dy+ pairs overlap, except for the largest box
size. The actual Dy+ values calculated with the EI-MS-EVB
method are consistently somewhat greater than those calcu-
lated with the MS-EVB method. Following the procedure
of Yeh and Hummer,”' the Dy+ value for an infinite volume
can be estimated by linearly extrapolating Dy+ to the point
1/L = 0. The asymptotic value of Dy+ with the FP EI-MS-
EVB model turns out to be 0.36 + 0.02 A%/ps, only 0.04
A?/ps larger than that determined with the MS-EVB ap-
proach. The trend toward increasing deviations with box size
reflects the slight inconsistency between instantaneous ato-
mistic forces and the effective potential, as discussed in
section 3.1. Despite this small discrepancy, the EI-MS-EVB
simulations correctly predict the nature of the relationship
between box size and Dy+. Moreover, the projected values
of Dy+ remain in good agreement even for the larger systems.

3.6. Computational Efficiency. This section summarizes
the most important result from the present article—that of
increased computational efficiency wth the EI-MS-EVB
model. Two simulations were performed to compare the
efficiency of nonbonded interaction calculations. In the first
simulation, electrostatic forces were calculated using the
smooth particle—mesh Ewald (SPME)'? algorithm with a
tolerance of 10%, and LJ interactions were calculated using
a simple spherical cutoff of radius 9.0 A. In the second
simulation, effective short-range potentials were applied with
a simple spherical cutoff at 9.26 A. The two approaches are
denoted FP (full-potential MS-EVB model) and EI (EI-MS-
EVB model), respectively.

Both runs were performed on a single core of a computer
equipped with IBM PowerPC970 quad-core processors and
8 Gb of memory. To avoid introducing additional complexi-
ties related to parallel computing, both runs were carried out
on a single CPU. The results for four different system sizes
are summarized in Table 1, which reports the total CPU time
spent on calculations of nonbonded interactions over 10000
time steps. At all system sizes, EI is significantly faster than
FP, being nearly 4 times faster than FP even for a relatively
small system with 5185 atoms. Very encouragingly, but not
surprisingly, the efficiency improvement increases with
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Table 1. Computational Efficiency of Nonbonded
Interaction Calculations as a Function of System Size,
Comparing the Full-Potential MS-EVB (FP) and EI-MS-EVB
(El) Approaches

number ratio

of atoms FP time (s) El time (s) (FP/EI)
649 9912 3414 2.9
5185 41229 8267 5.0
12427 104801 13889 7.5
34252 313810 27267 115

system size. For the system with 34252 atoms, the EI
approach is roughly 10 times faster than the FP approach.
Although the present results are for only a single processor,
when considering the difficulty in constructing an efficient
global parallelization of the fast Fourier transform (used by
the SPME calculation), the computational efficiency of the
EI-MS-EVB approach will become even more pronounced
when the scalability of the algorithm is considered. Molecular
simulations of large-scale biological systems are typically
performed on many CPUs, requiring such parallelization. The
EI-MS-EVB approach might therefore be better suited to
such applications than the full-potential MS-EVB method,
where calculations of long-range, nonbonded interactions
(particularly electrostatics) are computationally less scalable.
It has recently been demonstrated,’” for example, that highly
scalable biomolecular MD simulations are within reach when
implementing short-range (cutoff) electrostatic potentials
similar in spirit to those in the EI-MS-EVB approach.

4. Conclusions

Depending on the system of interest, the time and length
scales of importance to reactive events such as those involved
in PS&T can vary widely: from picoseconds to microseconds
and from nanometers to micrometers, respectively. Because
the system coordinates are usually propagated on a time scale
of femtoseconds in an MD allgorithm, MS-EVB applications
can be extremely computationally challenging. The EI-MS-
EVB approach utilizes an effective short-range potential*®*°
and accurately reproduces reference trajectories from the full
MS-EVB method. By comparing the instantaneous forces
on single atoms from the same configuration of nuclei, we
have shown that EI-MS-EVB model is not only accurate but
also transferable over a range of system temperatures and
box sizes. The accuracy of the EI-MS-EVB method was
further confirmed by evaluating several key properties: RDFs,
free energy profiles, activation energies of proton transport,
and proton diffusion coefficients. Most importantly, the EI-
MS-EVB model was found to outperform the full-potential
MS-EVB model in terms of computational efficiency. For
larger systems, the EI-MS-EVB approach is approximately
10 times faster than the SPME-based FP MS-EVB calcula-
tion on a single processor. In addition, the EI-MS-EVB
method of calculating short-range interactions should be
much easier to decompose and parallelize than the fast
Fourier transform of the SPME method, which is intrinsically
a global operation. This is an important consideration for
complex applications and large systems, which typically
require many thousands of CPUs.
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Very recently, the FM algorithm has even been used to
construct effective short-range forces from explicit evalua-
tions of the long-range Coulomb interaction.*® The resulting
effective interaction between unit charges successfully
reproduces many structural, dynamic, and thermodynamic
properties of various systems, including liquid water, solvated
ions, and hydrophobic solutes. This methodology*® and its
analytic approximation*® is closely related to the present
approach. Provided the van der Waals interaction is correctly
accounted for, the effective nonbonded interaction obtained
by force matching should be recoverable from the “universal”
effective short-range electrostatic interaction identified previ-
ously.*® Furthermore, integrating all the nonbonded interac-
tions in this manner can reduce the number of operations
per particle pair to just one table lookup in both the EI and
charge-scaled schemes.

In future work, one goal will be to extend the EI-MS-
EVB approach to the self-consistent, iterative MS-EVB (SCI-
MS-EVB)"® method. This approach determines the EVB
amplitude separately for each protonated complex, enforcing
consistency with the EVB amplitudes of other protonated
complexes in an iterative manner until the total potential
energy of the multiproton system has converged. The SCI-
MS-EVB method demands significantly more CPU cycles
for nonbonded interactions than does the single-proton MS-
EVB. The SCI-MS-EVB approach also typically requires five
or more iterations for the EVB amplitudes to converge.
Incorporating the EI-MS-EVB model into the SCI-MS-EVB
framework should therefore greatly facilitate the investigation
of PS&T behavior in highly acidic systems such as the
proton-exchange membranes used in fuel cells.”*
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Abstract: To quantify the progress in the development of algorithms and force fields used in
molecular simulations, a general method for the assessment of the sampling quality is needed.
Statistical mechanics principles suggest the populations of physical states characterize equilibrium
sampling in a fundamental way. We therefore develop an approach for analyzing the variances
in state populations, which quantifies the degree of sampling in terms of the effective sample
size (ESS). The ESS estimates the number of statistically independent configurations contained
in a simulated ensemble. The method is applicable to both traditional dynamics simulations as
well as more modern (e.g., multicanonical) approaches. Our procedure is tested in a variety of
systems from toy models to atomistic protein simulations. We also introduce a simple automated
procedure to obtain approximate physical states from dynamic trajectories: this allows sample-
size estimation in systems for which physical states are not known in advance.

1. Introduction

The field of molecular simulations has expanded rapidly in
the last two decades and continues to do so with progres-
sively faster computers. Furthermore, significant effort has
been devoted to the development of more sophisticated
algorithms'™ and force fields®'” for use in both physical
and biological sciences. To quantify progress - and indeed
to be sure progress is occurring - it is critical to assess the
efficiency of the algorithms. Moreover, if the quality of
sampling is unknown, we cannot expect to appreciate fully
the predictions of molecular mechanics force fields: after all,
statistical ensembles, whether equilibrium or dynamical, are
the essential output of force fields. These issues demand a
gauge to assess the quality of the generated ensembles'' -
one which is automated, nonsubjective, and applicable
regardless of the method used to generate the ensembles.
Ensembles are of fundamental importance in the statistical
mechanical description of physical systems: beyond the
description of fluctuations intrinsic to the ensembles, all
thermodynamic properties are obtained from them.'? The
quality of simulated ensembles is governed by the number
of uncorrelated samples present in the ensemble. Due to

* Corresponding author e-mail: ddmmzz@pitt.edu.

significant correlations between successive frames in, say, a
dynamics trajectory, the number of uncorrelated samples
cannot be directly gauged from the total number of frames.
Rather, the number of statistically independent configurations
in the ensemble (or the effective sample size, ESS) is
required.'>'® This effective sample size has remained
difficult to assess for reasons described below. In this work,
we present a straightforward method to determine the ESS
of an ensemble - regardless of the method used to generate
the ensemble - by quantifying variances in populations of
physical states.

A conventional view of sample size based on a dynamical
simulation is given by the following equation

t.
ESS = ——
[corr[f]

(1)
where £, is the simulation time, and #.[f] is the correlation
time'® for the observable £, which is presumed to relax most
slowly. However, the estimation of the correlation time is
data intensive and potentially very sensitive to noise in the
tail of the correlation function.'” Other approaches for
assessing correlations have, therefore, been proposed. For
example, Mountain and Thirumalai'®'® introduced the “er-
godic measure”, which quantifies the time required for the
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observable to appear ergodic. Flyvbjerg and Petersen'’
developed a block averaging method which can be adapted
to yield a correlation time and ESS.?°

The key challenge in applying eq 1, however, is the choice
of an observable f which consistently embodies the slowest
motions across the incredible variety of molecular systems.
Indeed, it is well appreciated that different observables
exhibit different correlation times (e.g., ref 21). For example,
in a typical molecule, bond lengths become decorrelated
faster than dihedral angles. Nevertheless, apparently fast
observable rarely are fully decoupled from the rest of the
system: slower motions ultimately couple to the fast motions
and influence their distributions in typical cases.”' On the
whole, there is significant ambiguity in the use of a hand-
picked observable to estimate “the” correlation time - not to
mention, subjectivity. Moreover, the ultimate goal of simula-
tion, arguably, is not to compute a particular ensemble
average but to generate a truly representative ensemble of
configurations, from which any observable can be averaged.

Several years ago, Lyman and Zuckerman proposed that
the configuration-space distribution itself could be used as a
fundamental observable.?” In particular, it was pointed out
that if configuration space is divided into different regions
or bins, then the resulting “‘structural histogram” of bin
populations could be a critical tool in assessing sampling.
The idea was subsequently used to quantify sample size in
at least two studies: Lyman and Zuckerman developed a
scheme to quantify ESS for trajectories with purely sequential
correlations based on variances in the bins of the structural
histogram;'® Grossfield and co-workers suggested a boot-
strapping approach for estimating ESS based on structural
histograms.'> The present work expands on ideas from these
studies. There has been related work for sequentially
correlated Markov chains.?***

This study extends the earlier structural-histogram ap-
proaches by focusing on physical or metastable states.
Qualitatively, a physical state can be defined as a region of
configuration space for which the internal time scales are
much shorter than those for transitions between different
states.”” The populations of physical states seem an intuitive
choice for quantifying sampling quality, since they reflect
slow time scales by construction. Indeed, the state popula-
tions along with state definitions (addressed in section 2.1)
can be said to embody the equilibrium ensemble. This type
of argument can be made semiquantitative by noting that
any ensemble average (f) can be expressed in terms of state
populations p; and state-specific averages (f); for state i,
because {f) = Xp{f)i. Thus, the goal of sampling can be
described as obtaining both (i) state populations and (ii) well-
sampled ensembles within each state.

Statistical mechanics principles strongly suggest, more-
over, that state populations should be viewed as the most
critical slow observables. To see why, consider states i and
J defined by regions of configuration space V; and V,. The
ratio of state populations is given by the ratio of state partition
functions
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- fv dr exp(—U(x)/kyT)
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Z ., dr exp(—U(r)/kgT)
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where Z; is the partition function for state i, U is the potential
energy of the system, 7' is the temperature, and r represents
all configuration-space coordinates. Equation 2 indicates that
state populations cannot be determined without good sam-
pling within each state. In other words, it would seem
impossible for an algorithm (which is correct for arbitrary
systems) to predict state populations without having already
sampled correctly within states (see Figure 1). For this reason,
the state populations can be considered the fundamental set
of slow observables - a physically motivated choice of
structural histogram. We will use variances in state popula-
tions to estimate ESS, an approach which applies to both
dynamic and nondynamic (e.g., exchange) simulations.

Accordingly, an important prerequisite for the estimation
of ESS is the determination of physical states. In this work,
we use a particularly simple method for the approximation
of physical states that uses information present in a dynamics
trajectory regarding the transition rates between different
regions. Regions showing high transition rates with each
other belong in the same physical state. Further, this
procedure also highlights the hierarchical nature of the energy
landscape. Our state approximation scheme is based on ideas
of Chodera et al.>> who developed approximated physical
states by determining a division of the total configuration
space that maximizes the self-transition probabilities (i.e.,
the divisions represent metastable states). See also ref 26.
Our state-approximation method can also be used with short
dynamics trajectories initiated from configurations obtained
from nondynamic simulations.

We emphasize, nevertheless, that our procedure for ESS
estimation can be used with states discovered by different
means.

The manuscript is organized as follows. First, we describe
in detail the procedure we use to estimate the effective
sample size. Then, we present results for several models with
different levels of complexity - a two-state toy model, butane,
calmodulin, dileucine, and Met-enkaphalin. Our ESS results
are compared with the previous ‘“decorrelation time” ap-
proach.?’” We also analyzed multi-us atomistic simulations
for the membrane protein rhodopsin.'> We then discuss the
practical aspects of the procedure and present conclusions.
Further, in the Appendix, we describe the simple, automated
procedure used to determine approximate physical states.

2. Methods and Systems

We have argued above that the populations of physical states
are fundamental observables for assaying the equilibrium
ensemble. We therefore propose that the statistical quality
of an equilibrium ensemble be quantified using variances in
state populations. As usual, the variances will decrease with
better sampling. Importantly, however, simple binomial
statistics permit a fairly precise quantification of the ESS -
i.e., the number of statistically independent configurations
to which an ensemble is equivalent - regardless of the number
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Figure 1. A schematic two-state potential energy landscape
illustrating eq 2. The states are defined by the “volumes” V4 and
V.. The distributions of configurations within each state help to
determine the overall ratio of state populations in eq 2.

of configurations in the original ensemble. Below, we will
address the issues of computing variances from dynamical
and nondynamical simulations as well as methods for
approximating physical states.

The key technical idea in connecting the variance in a
state’s population to the ESS follows work presented in ref
16: an analytic estimate for the variance can be computed
based on a known number of independent samples. If one
“turns around” this idea, given the observed variance, an
estimate for the number of independent samples can be
immediately obtained. In particular, given a region j of
configuration space with fractional population p;, the variance
in p; based on N independent samples is 07 = pi(1 — p;)/N.
In practice, this variance is estimated from repeated inde-
pendent simulations, each yielding a value for p;. The ESS
based on populations recorded for region j can therefore be
estimated via

¢ P —p)
N;tt — J 0--2 J (3)
J
where p; is the observed average population in region j.
Equation 3 gives the ESS for one simulation characterized
by 0,2 For N, simulations, the total ESS is fof.

Both p; and ojz can be computed from N, repeated

simulations

Nops Nops

_ 1 o 2 _ 1 () _ =2
Pi= N, 4 Pj,Of—mZ(P_i P @

where p{” is the population of state j from simulation i.

Two important points are implicit in these estimators (both
of which are discussed further, below). First, our analysis
assumes reasonable p; values have been obtained in the
simulations to be analyzed - although a low value of N°*
can suggest additional sampling is advisible. Second, our
effective sample size will have the lower bound N> N,
so in practice estimates such that N° = N, suggest poor
sampling.

As noted in ref 16, eq 3 is actually a limiting form
appropriate for large N. Although it is straightforward to
include corrections accounting for the fact that only N — 1
observations are independent (because p; is the observed

Zhang et al.

average among the p; values used in estimating the variance),
the effect is unimportant compared to the intrinsic fluctua-
tions in N°,

Each region or state will yield its own estimate for the
ESS via eq 3, but we are interested in the smallest ESS
reflecting the slowest time scales. As described below, in
this report, we use a hierarchical decomposition of config-
uration space which leads to only two states at the top level
by construction. In turn, these two states yield identical ESS
values by eq 3. Alternatively, if a full hierarchy is not
constructed, one can simply select the lowest ESS value as
the best quantification of sampling, reflecting the worst
bottleneck encountered; in such cases, it may be of interest
to set a minimum p; value for the governing state (e.g.,
0.01—0.05) to avoid the ESS being dominated by a relatively
minor state.

We note that, based on eq 3, the minimal value which
can be determined for a single simulation is one, and
generally N > 1. Thus, a value of O(l) is strongly
suggestive of inadequate sampling.

The current approach, in essence, uses a block-averaging
strategy'” and can be contrasted with the previous work of
Lyman and Zuckerman for dynamical trajectories.'® The
present work computes block-style variances of quantities
(the state populations) whose statistical behavior is straight-
forward to analyze - e.g., via eq 3. The earlier approach, in
contrast, directly exploited sequential correlations to do
“hypothesis testing”: Do the snapshots of a trajectory
separated by a fixed time interval behave as though inde-
pendent?'® The earlier work also used population variances
and an analog of eq 3; however, physical states were not
required because individual configurations were used, rather
than block averages as in the present work - which tend to
convolute time scales (sections 3.5 and 4.3).

2.1. Hierarchical Approximation of Physical States.
The approximation of physical states has previously been
addressed in some detail, particularly in the context of
developing Markov models.>> Below, and in the Appendix,
we describe a simpler approach used in this work. As we
elaborate in the Discussion, it appears that our ESS analysis
does not require a particularly precise specification of
physical states. Because our prescription is to find the slowest
time scale (i.e., smallest ESS) among the many which may
be present, and because our physical states are reasonable,
the approach works reliably. On the other hand, although
eq 3 can be applied to an arbitrary region in principle, it can
“get fooled” into overestimating the ESS if only a small part
of a state is considered: see section 4 for details.

We emphasize that our ESS analysis described above is
distinct from the states analyzed, and other reasonable state
decomposition procedures can be used.

The Appendix details the hierarchical state approximation
scheme adopted here, which is closely related to the work
of Chodera et al.>> In brief, given the best data available,
we first divide configuration space into small regions or bins
(following refs 16 and 28), which do not necessarily
correspond to energy basins. Based on one or more dynami-
cal trajectories (perhaps those being analyzed for ESS), we
estimate rates among each pair of regions. Starting from the
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Figure 2. A one-dimensional potential energy landscape with
four basins separated by three barriers.

U

fastest pairwise rates, the bins are combined into statelike
aggregated regions. By construction, all pairwise rates within
each aggregate are faster than rates between aggregates. The
process is continued to construct a full hierarchy until all
aggregates are combined (see Figures 3 and 4). The ap-
proximate states used to estimate the ESS are based on the
top (i.e., two-state) level of the hierarchy, which reflects the
slowest time scales as desired.

Our rate estimation procedure is well-suited to our purpose
of ESS estimation. First, it is fairly simple and typically
requires a small fraction of the computational cost of the
simulation being analyzed. More importantly, as noted in
the Discussion, it performs as well as a somewhat more
complex approach we implemented (data not shown).
Although our procedure (and others®®) requires dynamical
trajectories to estimate interbin transition rates, this does not
mean prohibitively expensive dynamics simulations must be
performed, as we now discuss.

2.1.1. State Approximation from Noncontinuous Dynami-
cal Trajectories. Because our state approximation scheme
depends on continuous dynamical trajectories, the question
arises as to how states can be obtained when sampling has
been performed using a nondynamical method such as replica
exchange.*?%3° Although exchange simulations use continu-
ous trajectories which contain the necessary information for
estimating rates among local regions,’! other sampling
methods may not employ dynamical trajectories at all (e.g.,
see ref 28).

In fact, states can be approximated based on a set of short
dynamics trajectories run after a possibly costly nondynami-
cal trajectory. In particular, a set of M trajectories (we use
M = 20 below) can be initiated from random configurations
selected from the nondynamical simulation. These short
trajectories need only be long enough to permit exploration
within states. There is no need for transitions between states.
The only modification to the state approximation scheme
described previously is that it may not be possible to iterate
the combination procedure until all states are combined.
Rather, the process will terminate after regions with measur-
able transition rates are combined. A set of approximate states
will remain for which no interstate transitions have been
recorded. For each of these remaining states, an ESS estimate
can be obtained via eq 3. Because of our interest in the
slowest time scales, the overall ESS will be taken as the
minimum among the various state-specific values.

The scheme just described is tested below and compared
with the use of longer trajectories for state approximation.
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We, again, emphasize that short dynamic trajectories are
only used to approximate states, whereas ESS is, subse-
quently, computed from the much longer nondynamic
trajectories. The nondynamic trajectories are presumed to
sample all the relevant states.

2.2. A Caveat: Self-Consistent but Not Absolute ESS.
Without prior knowledge or assumptions about a landscape,
it would appear impossible to know whether every important
state has been visited in a given simulation. This is not a
limitation of our analysis per se but of any attempt to estimate
ESS based on simulation data. Nevertheless, it is important
to make this caveat clear.

Therefore, the goal of the present analysis is not to assess
the coverage of configuration space but to self-consistently
assess sampling quality given the states visited in the
simulation. In other words, we answer, “What is the statistical
quality of the sampling based on the configurational states
visited in a given set of simulations?” Our ESS estimation
can therefore be viewed as an upper bound to the true ESS
based on the full configuration space. ESS estimation,
nevertheless, is essential for assessing efficiency in algorithms
and precisely specifying the predictions of modern force
fields.

On the other hand, so long as a state has been visited in
a simulation, it can greatly affect the sample size. For
instance, if a state has been visited only once, the estimate
of its population variance will be large and lead (correctly)
to a small ESS.

2.3. Estimating Variances in State Populations. The
heart of our approach is to estimate ESS based on variances
in state populations using eq 3. Clearly, then, without reliable
variance estimates, we cannot expect ESS values to be
reliable.

For dynamical simulations - i.e., simulations yielding
trajectories in which correlations are purely sequential, such
as MD and “ordinary” (Markov chain) MC - there is more
than one way to estimate a variance suitable for ESS
calculation via eq 3. Ideally, a number of independent
dynamics runs would be started from significantly different
initial conditions. Nevertheless, multiple simulations started
from the same configuration will also reveal the variance
associated with the duration of each run: for instance, if only
one simulation makes a transition to an alternative basin, a
large variance and small ESS estimate will result, ap-
propriately. It is important to note that the ESS thus
calculated is characteristic of one of the simulation trajec-
tories, so that Ny independent trajectories imply an ESS
which is Nops times as large. This discussion also indicates
that a single long trajectory can be divided into segments
(“blocks”) which can be used for variance estimation.

More complex simulation methods, such as replica
exchange,>?%** may require multiple independent runs for
careful variance estimation. To see why in the case of replica
exchange, note that continuous trajectories will traverse a
ladder of different “conditions” (e.g., temperatures or force
fields), but often only a single condition is of interest. By
the construction of such an algorithm, configurations ap-
pearing at one time at the condition of interest may be
strongly correlated with configurations occurring later on -
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Figure 3. Hierarchical physical states for dileucine shown via the average transition time required for transition among bin
pairs. Bin pairs that combine “faster” (i.e., have shorter transition time) are combined at a lower level of the hierarchy.
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Figure 4. Hierarchical physical states for butane shown via the average transition time (1/k5") required for transition among bin
pairs. Bin pairs that combine “faster” (i.e., have shorter transition time) are combined at a lower level of the hierarchy.

but not with configurations in between, when a different
trajectory may have occupied the condition of interest. In
sharp contrast to dynamics simulation, correlations may be
nonsequential. This absolutely precludes estimating the
variance by simply cutting up the equilibrium ensemble into
blocks or segments. Such a variance may not reflect sampling
quality and could misleadingly reflect only diffusivity among
ladder levels.>' We note that subtleties in estimating uncer-
tainties in replica exchange simulations have been noted
previously.>*=* Further, it may be possible to use the
independent continuous trajectories from one replica ex-
change run to provide p; values in eq 4; see also ref 16.
For a nondynamical simulation method, the only sure way
to estimate a variance which reflects the underlying ESS is
by multiple independent runs. The extra cost could be modest
if each run is sufficiently short and such runs would, of
course, enhance sampling.-i.e., they would “pay for them-

selves”. In any case, the cost seems worthwhile when it
permits careful quantification of the results.

2.4. Systems Studied. We study several systems using
the ESS procedure described above to establish correctness
and robustness of the procedure. The systems range from
toy models and small molecules to coarse-grained and
atomistic proteins.

Toy Models with Known Sample Size. First, we study
simple toy models for which the correct sample size is known
in advance, to establish the correctness of the procedure. The
toy system has n idealized “states” that correspond to preset
values of independently drawn random numbers. The sample
size in such toy models is simply the number of random
numbers drawn by construction. We use two such toy
models: n = 2 (and both states with equal population), and
n =5 (with state probabilities 0.1, 0.15, 0.2, 0.25, 0.3). An
application of eq 3 to the two-state system yields, by
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construction, the same sample size in both the states. On
the other hand, the effective sample sizes obtained may, in
general, be different when the number of states is greater
than 2. Thus, the five-state toy model is useful in determining
the consistency in the sample sizes obtained in the different
states.

The sampling in these toy models is nondynamic and
uncorrelated. Thus, the use of such models illustrate the
applicability of the effective sample size determined by eq
3 to nondynamic sampling. Results for the toy models and
all other systems are given in section 3.

Systems with a Priori Known Physical States. In contrast
to independent sampling in the toy models, dynamics-based
sampling in molecular systems is not typically independent
and the sample size is not known in advance. Nevertheless,
a knowledge of physical states allows for an independent
estimate of the ESS by computing the variances in the known
physical states and comparing with the estimate obtained via
approximate hierarchical states. Thus, the robustness of the
procedure described in section 2 with regard to definitions
of physical states can be checked. We study two such systems
with a priori known states: butane and calmodulin. A second,
independent ESS estimate for these systems is derived from
a time correlation analysis.'®

We study a standard all-atom butane model using the
OPLSAA force field.” This system has three well-known
states: trans, gauche+, and gauche-. The 1 us dynamical
trajectory is generated at 298 K using Langevin dynamics
(as implemented in Tinker v. 4.2.2) in vacuum with friction
constant 91/ps.

We also study the N-terminal domain of calmodulin, which
has the two known physical states: the apo form (PDB id
-1CFD) and the holo form (PDB id -1CLL). A long trajectory
(5.5 x 10" MC sweeps) was generated by using “dynamic”
Monte Carlo (small, single-atom moves only) as previously
described.*> To permit transitions, we use a simple alpha-
carbon model with a double-Go potential to stabilize the two
physical states. Full details of this model are given else-
where. >

Systems with Unknown Physical States. For most biomo-
lecular systems, the physical states are not known in advance.
For this reason, we test our method on several such systems,
starting with two peptides: leucine dipeptide (acetaldehyde-
(Leu),-n-methylamide) and Met-enkaphalin (NH3 -Tyr-[Gly],-
Phe-Met-COO™). We use the Charmm?27 force field for
leucine dipeptide and OPLSAA force field for Met-enkapha-
lin and generate trajectories using overdamped Langevin
dynamics (in Tinker v 4.2.2) at 298 K with a friction constant
of 5/ps for both. For leucine dipeptide we use a uniform
dielectric of 60 and the GB/SA solvation for Met-enkaphalin.*®-’
For each system, a 1 us simulation is performed with frames
stored every 1 ps for Met-enkaphalin and every 10 ps for
leucine dipeptide.

We then study a much more complex system - rhodopsin.
We analyze 26 independent 100 ns molecular dynamics
simulations of rhodopsin in a membrane containing 50 1-
stearoyl-2-docosahexaenoyl-phosphatidylethanolamine (SDPE)
molecules, 49 1-stearoyl-2-docosahexaenoyl-phosphatidyl-
choline (SDPC) molecules, and 24 cholesterols. There is an
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explicit water environment embedded in a periodic box. The
all-atom CHARMM27 force field was used. We analyze only
protein coordinates under the assumption that these will
include the slowest time scales.

2.5. Independent ESS Estimates. We would like to
compare ESS estimates obtained from our new procedure
to independent “reference” results. Independent ESS esti-
mates can be obtained in several ways, depending on the
system and simulation method to be analyzed.

For uncorrelated sampling in the toy models, the ESS is
known in advance: it is simply the number of samples used
to obtain the state variance. In this case, we merely check
that knowledge of the variances along is sufficient to recover
the number of samples.

In some molecular systems, such as butane and calmodulin
in this study, physical states are known in advance. Inde-
pendent variance (and hence ESS) estimates are then obtained
using the “exact states”. These are compared to ESS
estimates obtained fully automatically based on states ap-
proximated from trajectories. In systems with a small number
of states, additional ESS estimates can be approximately
obtained simply by counting transitions.

Whether or not physical states are known, if a dynamics
(or Markov Chain MC) trajectory is analyzed, independent
ESS estimates can be obtained using our previously devel-
oped structural decorrelation time analysis'® and eq 1. This
approach uses a 7., reflecting the time to sample the whole
distribution. In work with model one-dimensional systems
(data not shown), we have found that the ESS is estimated
within a factor of 2 using the method of ref 16; therefore,
ESS estimates based on decorrelation time are shown as
ranges.

3. Results

3.1. Nondynamic Toy Systems. First, we establish the
formal correctness of our method for estimating N°'. For
this purpose, we study the toy models described in section
2.4 for which the sample size is known in advance. For each
toy model, we draw N independent samples and estimate
the sample size using the procedure described in section 2.

To determine whether an accurate estimate of N°™ (= N)
is obtained, we also compute both the mean value and
standard deviation of N°" based on many repeats. As
suggested by eq 3, the N°™ variation depends on variances
of both the mean population and the population variance
(these quantities are equal across the states for a two-state
system). Further, care must be taken to account for the
nonlinear dependence of N°'" on the state variance in eq 3.

For the two-state model, with N = 2000, we obtain a mean
value of (V') = 2004, with a standard deviation of 57.4.
Similarly, for N = 4000, we obtain a mean (N°'") = 4041
with a standard deviation 117.6. This confirms our basic
premise of using eq 3 based on the binomial distribution.
The intrinsic fluctuations in the estimates, about 3% in both
cases, presumably do not decrease with increasing N due to
the nonlinearity of eq 3.

In the five-state model estimates of the sample sizes in
each state are different (see section 2), and such a model is
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Table 1. Automated and Independent Effective Sample
Sizes for Butane and Calmodulin®

Zhang et al.

Table 2. Effective Sample Sizes for Dileucine and
Met-Enkaphalin®

approximate states

known time
1 2 3 states  correlation  counting
butane 6064 6236 6200 5865 5000—10000 6000
calmodulin 93 90 92 91 80—-160 80

2 ESS estimates obtained from eq 3 using three different sets of
approximate physical sets are shown in columns 2—4. Also shown
are ESS estimates from eq 3 and the known physical states
(column 5), the structural decorrelation time analysis'® (column 6),
and from counting the number of transitions (column 7).

a further step in confirming eq 3 in a more heterogeneous
case. Using N = 2000, and states with fractional populations
0.1, 0.15, 0.2, 0.25, and 0.3, the mean sample sizes (standard
deviations) are obtained as 2007 (70), 1998 (57), 1974 (35),
1966 (79), and 1986 (63), respectively. There is a good
agreement across the states as well as with the correct sample
size N = 2000.

3.2. Systems with a Priori Known Physical States. We
turn next to molecular systems with known physical states
for which long dynamics trajectories are available. This is
essentially the simplest case for a molecular system, because
two independent estimates of ESS can be obtained, as
described below. Comparison of our blind, automated
procedure to these independent estimates further establishes
the correctness and robustness of the procedure. Additionally,
because our automated state-construction procedure is some-
what stochastic (see Appendix), we repeat the procedure to
understand the fluctuations in our ESS estimates.

We obtained multiple estimates of ESS as described above
using a single long trajectory for each of the two systems
with known physical states - butane and calmodulin. Table
1 shows results for N°* for the two systems, including three
different estimates of N°* from eq 3 based on different sets
of approximate states. Comparison is also made to the use
of eq 3 based on known physical states and to the range of
effective sample sizes obtained using time correlation
analysis. For both butane and calmodulin, the procedure is
very “robust” in estimating N°, as different binning proce-
dures give similar estimates. These estimates also agree with
the range of sample sizes suggested by the correlation time
analysis and with counts of transitions. For butane, the total
number of transitions among the three state is about 6000.
For calmodulin, the total number of transitions is 80. These
results also agree with the estimates in Table 1.

3.3. Systems with Unknown Physical States. Exact
physical states are not known in advance for most biomo-
lecular systems. Thus, we test the approach described in
section 2 to determine ESS in three such systems - dileucine,
Met-enkaphalin, and rhodopsin. Because the physical states
are not well-defined, we can only obtain independent
estimates from the time correlation analysis. A single 1 us
trajectory is analyzed for each of the peptides, whereas 26
trajectories of 100 ns each are studied for rhodopsin.

Table 2 shows repeated ESS estimates using our ap-
proximate states with eq 3 as well as the time-correlation
analysis for both dileucine and Met-enkaphalin. There is good
agreement between our variance-based estimates and those
from time correlation analysis for both systems.

approximate states

time
1 2 3 correlation
dileucine 1982 1878 1904 1100—2200
Met-enkaphalin 416 362 365 250—500

2 Equation 3 is used on the final two states in the hierarchical
picture obtained by three different repetitions of the binning
procedure (columns 2-4), and the ESS is independently
estimated from the structural decorrelation time correlation
(column 5).

We proceed to analyze the sample size of 26 rhodopsin
trajectories based on our approximate states with eq 3. Our
analysis gives three physical states, with sample sizes 1.93,
1.99, and 2.73, respectively, per 100 ns trajectory. The three
states are never further connected in full hierarchy, since
transitions are not observed between some bin pairs. The
three N°f estimates, nevertheless, are quite similar and all
are O(1). However, eq 3 always yields a value =1, indicating
that the 100 ns rhodopsin values are effectively minimal and
reflect inadequate sampling. In ref 15, Grossfield and co-
workers examined the same trajectories with principal
components and cluster populations. They concluded, simi-
larly, that rhodopsin’s fluctuations are not well described by
100 ns of dynamics and that the sampling is not fully
converged even for individual loops.

3.4. Application to Discontinuous Trajectories. Al-
though sample size estimation using eq 3 is applicable to
nondynamical simulation methods, the underlying physical
states, approximated from transition rates between regions
of configuration space (see Appendix) may not be easy to
calculate from nondynamical trajectories. We therefore
investigate the feasibility of running short dynamics trajec-
tories starting from configurations previously obtained from
nondynamic simulations and then estimating ESS based on
states from the short dynamics simulations.

For this purpose, we ran a series of 20 short Langevin
simulations for both dileucine and Met-enkaphalin, starting
from configurations obtained in the original long trajectories
which serve as proxies for well-sampled ensembles by an
arbitrary method. For both systems, we approximated states
as described in section 2.1 and estimated the ESS as min
{Ns™}. For simulation segments as short as 200 ps we could
obtain the correct ESS within a factor of 2 (dileucine) or 3
(Met-enkaphalin), whereas the longest time scales (i.e.,
decorrelation time) in these systems exceed a nsec.'®
However, a precise estimate of the ESS required 1—3 ns
segments.

We note that Chodera et al.>> also used discontinuous
trajectories in their state approximation scheme. As noted
in the Appendix, our scheme is a simplified version of theirs.

3.5. Spurious Results from Unphysical States. Thus far,
we have focused on using physical states with eq 3, based
on the arguments presented in the Introduction. In principle,
however, eq 3 can be applied to an arbitrary region. To
confirm the need for using states, here we investigate what
happens when only part of a state is used. We will see that
spurious ESS estimates results.
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Table 3. Spurious ESS Estimates When Physical States
Are Not Used?®

bin number ESS

12567

61380

82080

91820

292640

71180

240200

5600

162720

0 310260

S OoONOOUA~WN =

“ Butane sample size is estimated in each of 10 arbitrary
regions of configuration space. The actual sample size is ~6000,
based on a 1 us Langevin dynamics trajectory.

The system we examine is butane. We divide the config-
uration space into 10 “bins” using Voronoi cells** and
perform no combination into physical states. We estimate
the effective sample size using eq 3 for each bin. We examine
a 300 ns trajectory, for which N = 2000.

Table 3 shows estimates of ESS obtained for each of the
10 arbitrary bins, which are not approximate states. The
estimates show a dramatic bin dependence.

The problem with using bins rather than states results for
simulations which use dynamics. In fact, arbitrary bins can
be used in eq 3 if sampling is fully uncorrelated; we verified
this using a fixed number of butane configurations which
were essentially uncorrelated. However, when dynamics are
present, the variance of one bin is a convolution of state-
population variances and fast intra-state processes. We
discuss this in more detail below.

4. Discussion

4.1. Is the ESS Measure Too Strict? It certainly can be
argued that many observables of interest will “converge” to
satisfactory accuracy and precision even with small sample
sizes. However, the ESS measure should be valuable in two
important regards: (i) as an objective measure of sampling
quality that can be applied to any method to enable unbiased
comparison and (ii) as a measure of the quality of ensemble
generated, which can be expected to embody structural details
of interest in biomolecular simulation.

4.2. Diagnosing Poor Sampling. A key outstanding issue
is how to know when sampling is inadequate, at least in the
self-consistent sense of section 2.2. The “diagnosis” of poor
sampling is intimately connected with the idea of estimating
ESS by subdiving a dynamics trajectory into smaller, equal
segments.

First, consider subdividing a dynamics trajectory into
smaller, equal segments to estimate the population mean and
variances. If the trajectory is very long compared to all
corelation times, no serious problems will arise. If the sample
size estimate for each of these segments is O(1), however,
then the method does not reliably give the estimate of the
sample size of the total trajectory and likely overestimates
it. For example, if the correct total number of independent
configurations in the full trajectory is 10, and we subdivide
it into 20 equal segments, then each of the segment will give
a sample size of 1, which is the minimum number possible
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using eq 3. This leads to an overestimate of the sample size.
But the problem is easily diagnosed by ESS ~ 1 for each
segment. If division into fewer segments still leads to ESS
~ 1, sampling is likely inadequate.

It is of interest to consider a special case of poor sampling,
where trajectories started from different initial conditions visit
mutually exclusive states - i.e., have no overlap. In this case,
the p; values in eq 3 will not be known correctly. Neverthe-
less, because some p,(-i) values in eq 4 will be zero, the
analysis will correctly “sense” a maximal variance with ESS
~ O(1) for each simulation. In other words, poor sampling
can still be diagnosed.

4.3. The Inadequacy of Arbitrary Regions for ESS
Estimation. It is somewhat difficult to understand the reason
for spurious results for ESS obtained using a correlated
dynamics trajectory from bins that are a small part of a
physical state as in section 3.5. A two-state thought experi-
ment is instructive. Consider a system with two basins, A
and B, separated by a barrier. Imagine that we divide the
full space into many bins, of which the seventh is a small
part of state A and has the (true) probability of p;. In ideal
uncorrelated sampling, the observed outcomes should be in
the bin with probability p; and out of the bin with probability
1-p;. However, in dynamical sampling, if the system is
trapped in state A (with a fractional population p,) for the
observation time, the observed probability in the bin turns
out to be pi/ps instead of p;. Conversely, if a trajectory
segment is trapped in state B, the observed population of
bin 7 is zero. The variance of this observed distribution when
p7 << pa is much lower than the binomial case; physically,
the fast time scales within state A act to “smooth out”
population variation within a small part of the state. The
estimated ESS obtained using a correlated (i.e.,dynamical)
trajectory thus will typically appear to be larger based on
such a bin. This is seen in Table 3, except for one bin which
corresponds, roughly, to a physical state.

5. Conclusions

We have developed a new method to assess the effective
sample size, which quantifies the degree of sampling in
molecular simulations. Our approach is based on the
fundamental role of physical states and hence of variances
in their populations. A major feature of the method is that it
is applicable both to dynamical and nondynamical simulation
methods and gives a tool to compare sampling and efficien-
cies of different molecular simulation algorithms. Our
previous approach was applicable only to dynamical (se-
quentially correlated) molecular simulation algorithms.'®
Another feature of the new procedure is that it is applicable
to discontinuous trajectories as well. We also demonstrated
that our procedure is fairly insensitive to the precise
definitions of physical states - a fact that is expected to be
of importance for systems for which actual physical states
are not known in advance. We applied the approach to
systems ranging from discrete toy models to an all-atom
treatment of rhodopsin.

To supplement the estimation of the effective sample size,
we also developed a simple procedure for the automated
determination of physical states, which is based on previous
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work.? This procedure yields, in a natural way, a hierarchical
picture of the configurational space, based on transition rates
between regions of configurational space.
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Appendix: A Simple Hierarchical Scheme for Approxi-
mating Physical States from Dynamical Trajectories. In this
Appendix, we describe our physical state discovery method
and its results. In this method, bins or regions in configu-
rational space are combined to give the physical states, as
discussed below in more detail. Our method is based on the
work of Chodera et al.?> but is simpler. There is no
Markovian requirement on the selection of bins. Indeed, a
typical bin in a configurational space for a large multidi-
mensional system may itself encompass several separate
minima. We emphasize that our procedure is designed solely
for the purpose of estimating sample size and is not claimed
to be an extremely precise description of states.

Our approach explicitly shows the hierarchical nature of
the configurational space***' and focuses on the slowest time
scale - which is of paramount importance for the estimation
of the effective sample size in the main text.

Method

Use of Rates To Describe Conformational Dynamics.
Our approximate states are constructed based on rates
between regions of configuration space, which are a funda-
mental property that emerges uniquely from the natural
system dynamics. Following ref 25, we first decompose the
conformational space into multiple bins as detailed below.
Subsequently, we combine bins that have the highest
transition rates between them, iterating to create a hierarchical
description. This procedure is based on the physical idea of
separation of time scales: there are faster time scales (high
transition rates) associated with regions within a single
physical state and slower time scales for transitions between
states. Furthermore, “fast” and “slow” time scales are not
absolute, necessitating a hierarchical description following
precedents.***!

Binning Decomposition of the Configurational Space.
We divide the whole configuration space into m bins and
determine the physical states by combination of these regions.
All data reported here used m = 20. The value m = 20 was
motivated by our intuition that regions with less than 5%
population should not be allowed to dominate ESS. However,
we obtained very similar results using larger m values of 40
and 60.

The procedure to decompose the whole configurational
space (with N configurations) into m bins is as follows:?®

* A reference configuration i is picked at random from
the trajectory.

 The distance of the configuration i to to all remaining
configurations in the trajectory is then computed, based on
an appropriate metric discussed later.

* The configurations are sorted according to distance, and
the closest N/m configurations are removed.

Zhang et al.

* Steps 1—3 are repeated m — 1 times on the progressively
smaller set of remaining configurations, resulting in a total
of m reference configurations.

For the distance metric, we select the root-mean squared
deviation (rmsd) of the full molecule, estimated after
alignment. We note that using just the backbone rmsd may
be a poor distance metric for peptides as it ignores side chain
kinetics. However, other metrics may prove useful.

After reference structures are selected, we decompose the
whole space into bins based on a Voronoi construction. That
is, for each configuration, we calculate the rmsd of this
configuration to each of the m reference structures. We assign
the configuration to the bin associated with the reference
structure, with which the configuration has the smallest rmsd.

Calculation of Rates among Bins and Bin Combination.
We compute the mean first passage time (MFPT) from each
bin, i, to every other bin, j, using a continuous dynamical
trajectory or a set of trajectories. The rate from bin i to bin
Jj is the inverse of that MFPT. In general, the rate from bin
i to bin j is not the same as the rate from bin j to bin i - and
we take a linear average of these two rates to define an
effective rate between bin i and bin j, kf_-:iff. The effective rates
are then used to construct a hierarchy of states. Rates may
also be computed via alternate methods such as via transition
matrices, and these different definitions may lead to some-
what different approximate physical states; however, the
estimates of the effective sample size should be fairly robust,
based on our experience varying other parameters.

Hierarchy. In essence, we perform hierarchical cluster-
ing.*> We construct a hierarchy of states by combining bins
together if all pairs of rates k§'" exceed a cutoff, k.. The cutoff
is then decreased. We start with k. = 1/min(MFPT) and
progressively decrease k. (or, equivalently, increase the
transition time cutoff) until the next smallest k5" value is
reached. The new set of k?jff is, then, calculated between the
new set of bins. With a decrease in k., more bins are
combined resulting fewer states. Ultimately all bins are
combined if transitions among all bin pairs are present in
the trajectories which are analyzed. See Results below.

The rule of unanimity - the requirement for fast transitions
among all bin pairs in a state - is important for ESS
estimation. In physical terms, it prevents a bin which
“straddles” two states from combining with bins on both
“sides” of the straddled barrier (until a suitably low k. is
employed). In turn, this absence of straddling prevents
anomalous ESS estimates.

We note that the hierarchical picture can be significantly
affected by the time interval between snapshots underlying
the MFPT calculations. For example, although a trajectory
may have a low likelihood (hence a low rate) to cross over
the 2kgT barrier in Figure 2 in time 7, it may easily cross
that barrier for a long enough time interval, 7,. Thus, a
hierarchical picture at the lowest level can differentiate the
two left states of Figure 2 if the rates are computed from
the dynamic trajectory with snapshots at every 7, interval.
On the other hand, if the rates are computed using the 7,
interval, 2kgT barrier cannot be resolved at the lowest
hierarchical level. As an extreme case, if the interval
between snapshots is longer than the largest correlation
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time in the system, then the rates to bin i from any other
bin is simply proportional to the equilibrium population
of bin i - and the application of the procedure described
above is not appropriate.

Figures 3 and 4 show the hierarchical physical for
dileucine and butane, respectively. Both start with m = 20
initial bins and combine all the way to a single state. The
effective sample size is calculated from the two-state level
of the hierarchy as described in section 2.
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Abstract: We report a GPU implementation in HOOMD Blue of long-range electrostatic
interactions based on the orientation-averaged Ewald sum scheme, introduced by Yakub and
Ronchi (J. Chem. Phys. 2003, 119, 11556). The performance of the method is compared to an
optimized CPU version of the traditional Ewald sum available in LAMMPS, in the molecular
dynamics of electrolytes. Our GPU implementation is significantly faster than the CPU
implementation of the Ewald method for small to a sizable number of particles (~10°).
Thermodynamic and structural properties of monovalent and divalent hydrated salts in the bulk
are calculated for a wide range of ionic concentrations. An excellent agreement between the
two methods was found at the level of electrostatic energy, heat capacity, radial distribution
functions, and integrated charge of the electrolytes.

1. Introduction

The introduction of highly optimized, specialized hardware,
that is, the graphics processing unit (GPU), has allowed for
rendering high definition, nearly photorealistic 3D scenes in
real time on a standard personal computer. Ever increasing
market demand for fast and realistic graphics has driven a
rapid development of inexpensive GPU devices, with a
doubling of computational power every 12 months. A modern
GPU is a highly parallel, multithreaded device with floating
point speed close to 1 TFLOPS and a bandwidth in the 100
GB/s range. The GPU derives its superb computational power
from its design, specialized in performing intensive computa-
tions on large sets of data in parallel. In recent years, the
GPU hardware has become available to nongraphical ap-
plications through the advent of general-purpose program-
mability of the device. Problems that can take advantage of
the high-throughput parallel computations can greatly benefit
from the GPU architecture and easily reach a 100-fold

*To whom correspondence should be addressed. E-mail:
m-olvera@northwestern.edu.

" Department of Chemical and Biological Engineering.

¥ Department of Materials Science and Engineering.

¥ Department of Chemistry.

increase in performance over equivalent implementation on
a CPU.'? A notable example is molecular dynamics (MD)
with reports of GPU implementations achieving speed-ups
in excess of 100 times compared to the standard MD codes.
However, the high level of data parallelization comes at the
expense of limited caching and flow control compared to
the CPU."*"> Thus, in most cases, it is not possible to simply
recompile existing CPU codes on the GPU, and it is often
required to substantially redesign existing methods and to
develop new algorithms.

In order to reduce finite-size effects, periodic boundary
conditions are imposed in a typical MD simulation. That is,
if a particle crosses the simulation box boundary, it im-
mediately reappears from the opposite side. Equivalently,
this can be seen as if the system has been replicated infinitely
many times in each direction and each particle has infinitely
many images. In principle, one has to include contributions
from all the images of all the particles in order to compute
the total energy of the system. In practice, this is seldom
necessary, and it is sufficient to cut off interactions at a
certain distance r, and evaluate only the interaction between
particles that are within r, from each other. Formally, if we
assume that a system containing N particles is homogeneous

10.1021/ct100365¢  © 2010 American Chemical Society
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and isotropic with density p, then the error introduced in
the total energy by truncating the potential at r, is®

U

error

= %B S utrdmr dr (1)

where u(r) is the true, nontruncated potential and we
explicitly used the fact that the system is isotropic to write
the integral in spherical coordinates. If u(r) o< r~* with o >
3, the correction Uy o< 2 * can be made arbitrarily small
by increasing the cutoff distance r.. However, if u(r) falls
off slower than 7, any such cutoff will result in a divergent
correction to the total energy. Most intermolecular potentials
fall off faster than > and can be considered short-range.
Practically, we can safely truncate them at a suitable cutoff
distance, typically chosen to be less than half the diameter
of the simulation box, an approximation commonly known
as the nearest image convention. Important exceptions are
Coulomb and dipolar interaction potentials that fall off with
distance as r~ ' and r >, respectively. These electrostatic
potentials describe interaction between point charges and
dipoles ubiquitous in nature, most notably in biological
systems. It has been shown in the past that a truncation of
long-range interactions can lead to artifacts like the formation
of nonphysical structures in ionic liquids.”®

A proper treatment of the electrostatic interaction is a
necessary feature in a general-purpose molecular dynamics
code. The Ewald summation method’ (henceforth referred
to as the ES method) and its derivatives are most commonly
used, though several alternatives exist.'®'" The trick behind
the ES method is to separate the electrostatic energy into a
short-range and a long-range contribution, with the long-
range contribution computed efficiently in reciprocal space.
The numerical effort needed to calculate the total electrostatic
energy using ES method scales as O(N*?) with the system
size.® The computational expense can be reduced to O(N
log N) by interpolating charges to a lattice and using fast
Fourier transform to compute the reciprocal space sum. This
is the basis of the smoothed particle mesh Ewald (SPME)
method,'? used in several MD packages. However, an
implementation of these methods on the GPU is a challenging
task since the long-range contribution has to be treated
carefully in order to harvest the full benefit of the massive
data parallelization. A successful implementation of the SPME
method on the GPU has been recently reported.” Also, an
alternative algorithm based on the multipole expansion has been
proposed.'? Unfortunately, although very efficient, both schemes
are complex, and full apprehension of these algorithms requires
intimate knowledge of the GPU architecture.

In this paper, we take a different approach and present
results of the GPU implementation of a treatment of the
electrostatic interaction recently introduced by Yakub and
Ronchi (henceforth referred to as the YR method).'* ! This
approximation is particularly suitable for isotropic ionic
fluids. The expressions for the electrostatic energy and the
interparticle force are remarkably simple and can be easily
implemented into an existing MD code.
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2. Methodology

The total electrostatic energy of a system of N charges placed
in a cubic box of length L with periodic boundary conditions
is

1 1 N, q9:4;

& 24mepe, & iFITF, — F; + ALl

@)

where & is the vacuum permittivity, &, is the relative static
permittivity, 7; (7;) is the position of charge g; (). n = (n,, ny, n),
where n,, n,, and n, are arbitrary integers, counts all periodic
images. The prime in the second sum indicates that the i = j
term should be omitted for 77 = 0, and the 1/2 prefactor accounts
for double counting. The sum in eq 2 is only conditionally
convergent and cannot be directly used in simulations. The idea
behind the Ewald method is to separate eq 2 into short- and
long-range parts, each expressed as a rapidly converging sum.
The total electrostatic energy can be written as the sum of these
two contributions plus a constant self-energy contribution®

Eel = Eshort + Elong + Eself (3)
The short-range contribution is calculated in the real space as

N
— l 1 qlqj \/— - =
Eshor[ - 247t808r iz l—’:l — _’:jlcrfC( al r; r]l) (4)

J=1
iZj

where erfc(x) = 1 — erf(x) is the complementary error function
and o is the Ewald parameter. The long-range sum (Ejong) is
evaluated in the reciprocal space as

11 exp(—k/4a) |+
g = T 25 ISk (5
one 2L3808rg{) IS

where k = (2m)/(L)n are the reciprocal lattice vectors, and
S(%) — Zqi eik-?i (6)

is the charge structure factor. In addition, a self-energy term

N
1 (08 2
E = — —_ .
self 4ﬂ805rﬁ; q; (7)

arises, and it has to be added to the sum of short- and long-
range terms. Note that the Ewald parameter a is related to the
position of splitting between short- and long-range parts in the
Ewald sum. In a simulation, o has to be carefully tuned to
ensure the most optimal performance.

We briefly summarize the YR method. A detailed deriva-
tion is presented in the original paper.'* In an ordered phase,
the crystal lattice sets a natural direction for the simulation
box. This is not the case in fluids where all directions are
equivalent; that is, there is no preferred orientation of the
simulation box. Thus, Yakub and Ronchi proposed to average
eq 3 over all directions of the reciprocal lattice vector k;
that is, E. = (Fe), where

()= ﬁr [T dosin6 [ dp... 8)
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is the average over the polar angle 6 and the azimuthal angle
¢. Note that the averaging is performed over all possible
orientations of k while 7; is kept fixed; thus it is only
necessary to average the Ejqy, term since Egor and Egr terms
have no 0 or ¢ dependence. If we impose electroneutrality,
Y¥,g: = 0, the expression for the angularly averaged total
electrostatic energy takes a surprisingly simple form'*

Ey =3 26, ©)
i
i

with the pair potential

q:4; 17\’
(©) — ] 1100
o) 4ﬂ80£rrij[1 * Z(r ) ] 10

m

where r; = [7; — 71, and r,, = (3/4m)"L is the radius of a
sphere of volume L°. Note that unlike the adjustable
parameter o in the Ewald method, 7, is fixed by size of the
simulation box.'* One counts only the interactions between
particles at distances 0 < r; < r,. A drawback of eq 10 is
that the pair potential ¢‘“)(r;) is nonzero at its minimum at
ri = P (1) = 3qiqi/8epe.r,, that results in a jump in
the cutoff scheme. It is therefore convenient to shift this
potential by —¢‘“(r,,) to bring the boundary values to zero.
That is, a modified interionic potential is defined

94 s\ Ty 2
b Ao o —1—=Ill—=] = <
¢(O(Vij) = 4Jteogrrij[1 + Q(rm)((rm) 3 1y <71,

>
0 Fi Z Ty

such that ¢‘“(r; ;) — 0 as r;; — r,,. By using the electroneu-
trality condition, sum Zfilqi = 0, once again, the expression
for the total electrostatic energy (eq 9) in terms of the
modified interionic potential can be written as

N 2
E,=- 1 Y ¢y a2
e = lomee,r, 2 Y

ij
=)
However, the expression for the interparticle force },-j =
—Vi© = =V is not affected. Equation 11 is the effective
electrostatic pair potential ¢‘“ associated with the Coulombic
system and is the central result of the YR method. Thus, for
an isotropic electroneutral system subject to periodic bound-
ary conditions, long-range effects of the electrostatic interac-
tion can be expressed in terms of a finite range potential.
It is worth mentioning that the cutoff radius r, =
(3/4m)'L ~ 0.62L is larger than L/2. This fact has to be
accounted for when calculating the electrostatic potential

dOF) = 3,90 (13)

JEi

on a charge ¢; located at 7. Namely, the electrostatic
contribution of some charges has to be included twice, that
is, as the original charges and as their “phantom” images.'*
These ions are contained in the shaded region in Figure 1
and are obtained by the overlap of a sphere of radius r,
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Figure 1. Main unit cell and spheres of radius r, centered
on an ion P and its nearest images P. Shaded regions
indicate the overlap of these spheres. The effective interaction
of ion B with ion P is counted twice, both as the original ion
and its “phantom” image B'. lon A is counted only once since
it is in a nonoverlap region, and the effective interaction
between ions P and C is zero. The blue line indicates the
boundaries of the cubic simulation box. See section 3 for
description of the dotted circle.

centered on an ion and six spheres of the same radius
centered on the images of the ion. To illustrate the calculation
of the effective pair potential in the YR method, we show
four particles in the xy plane (z = 0) with coordinates
P(0, 0, 0), A(xa, ya, 0), B(xg, v, 0), and C(xc, y¢, 0). Particle
A is in the nonoverlap region of the sphere centered at P,
and thus its interaction with P needs to be counted once.
That is, the effective pair potential between particles P and
Ais

P = 3O0NE + 32 (14)

Particle B is in the overlap region of the sphere centered
at P, and thus its interaction with P needs to be counted
twice, both with particle B and its “phantom” image B’. The
effective pair potential between P and B is

39 = 3902 12 + 3900, — L2 + 33 (15)

Since particle C is outside the sphere centered at P, it needs
not be counted, and the effective pair potential between P
and C, ¢pc, is zero.

3. Implementation Details

A direct consequence of the cutoff radius r,, = (3/4m)'L
being larger than L/2 is that each ion has more than N
neighbors, rendering the use of a neighbor list impractical,
from the point of view of both the memory required to store
it and the overhead to update it. Instead, one simply loops
over all ions and decides which ones contribute once, which
twice, and which do not contribute at all to the sum in eq
13. This implies that when implementing the YR method
into the HOOMD Blue package, it is not possible to use the
sophisticated EvaluatorPair class template specifically de-
signed for the ease of implementing additional short-range
potentials. Instead, we implemented a specialization of the
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1: 4 « blockIdz.x x blockDim.z + threadldz.x

2 ¢ —0,f; <0

3: for j =1, Njops do

4: if i # j then

5 rij — |7 — 7|

6: if rij <7y then

7 Compute potential ¢(©) (ri5) using Eq. (11)

8: Compute force fi; = —V@f) (ri5)

9: ¢i*—¢z+¢;(0)(7‘i1)aﬁ‘—f:+ﬁ'g‘

10: if rij > L — rp, then

11 for &= (—1,—-1,-1),(~1,—-1,0),(-1,-1,1),...,(1,1,1) do
12: oy 7 — 7 + L&

13: if f"ij is inside the shaded regions in Figure 1 then
14: Compute potential ¢(©) ( T:”D using Eq. (11)
15: Compute force f:]' = —ngi]C) ( 7:5] )

16: 61— 00+ 0© (7)) i = fi+ fi

17: end if

18: end for

19: end if

20: end if

21: end if

22: end for

Figure 2. Pseudocode for computing pair Coulomb interac-
tions in the YR method. blockldx and threadldx are standard
CUDA structures that contain information about the current
execution block and thread, respectively.

PotentialPair template with a custom EvaluatorPairCoulomb
class designed to avoid costly use of the HOOMD’s neighbor
list system.

The CUDA kernel for computing the pair Coulomb
interaction in the YR approximation is described in Figure
2. Each thread handles one ion i of the main cell, and one
loops over all ions j different from i. If the interionic distance
ri < L — r,, that is, if both ions are inside the dotted circle
in Figure 1, their contribution to the Coulomb energy is
counted once. On the other hand, if L — r,, < ryj < 1y, one
needs to include the contribution of the image ion 7 =
7 + Le as well, if 7; = 7 — 7; is inside one of the
shaded regions in Figure 1. ¢ is one of the vectors (— 1, —
L—-1,(—-1,—-10),(-—1,—-1,1),..(1,1, 1), excluding
(0, 0, 0). Finally, if r;; > r,,, the ion pair (i, j) is ignored. Since
the order in which the contributions from different ions are
added to the force and potential sums is irrelevant, a fully
coalesced memory read is trivially achievable.

In order to compare the performance and accuracy of the
YR method against the ES method in electrolyte systems,
we performed MD simulations of hydrated monovalent and
divalent electrolytes, with valence zy = —z— = 1 and z+ =
—z- =2, respectively. We use the restricted primitive model
(RPM), where an ion is modeled as a hard sphere with a
point charge embedded in its center immersed in a continuum
dielectric medium. The excluded volume of ions is modeled
by the repulsive part of the shifted Lennard-Jones (LJ)
potential' '8

Up(r) = 46”[(%12 a (gﬂ +ey r<2%o (16)

0 r > 2"q

where o is the diameter of bulk hydrated ions, taken as 6.6
A and 8.25 A formonovalent and divalent ions respectively.'*°
ey = lkgT is the LJ interaction strength, where kg is the
Boltzmann constant and 7 is the temperature. RPM has been
quite successful in the prediction of thermodynamic proper-
ties of bulk ionic solutions, and in describing several
interesting phenomena associated with charged colloidal
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systems—such as charge inversion and charge reversal.*'*

In charge inversion, co-ions and counterions switch their roles
near an electrified surface, and in charge reversal, the native
surface charge of a colloid is overcompensated by counter-
ions. These effects are due to the ion-size correlations, treated
in a coarse-grained description by associating an excluded
volume to the hydrated ions.

MD simulations were performed in an NVT ensemble at
a reduced temperature 7# = kgT/e = 1 with a time step of
0.0057, where ¢ = 1kgT and 7 = (mazle)” 2 are the reduced
LJ units® of energy and time, respectively, and m is the
mass of ions, set to unity. The relative static permittivity of
the solvent is & = 78.4, corresponding to an aqueous
solution. The average electrostatic energy per ion is defined
as

_ <E el>
Nk T

k

A7)

where E is defined in eq 12 and (...) stands for the time
average. The heat capacity per ion is defined as

G _ ()~ (ED

Cc* =
Nkg N(kgT)*

(18)

where C, is the heat capacity in real units. These averages
and corresponding standard deviations were calculated from
the snapshots collected every 100 time steps, which is well
beyond the sample correlation time determined from the
associated autocorrelation function.® A total of 100 000 to 1
million MD time steps were performed, where the longer
runs correspond to the more dilute systems. The time
averages are calculated from the second half of each run,
well beyond the equilibration time.

The YR method is implemented in the development
version of the HOOMD Blue package,”* revision 3109.
HOOMD Blue currently supports only single precision
arithmetic. Simulations were performed on NVIDIA GTX
295 and GTX 480 GPUs installed in a custom built
workstation with an Intel Core 17 920 CPU, 12 GB of RAM,
running the Fedora 12 Linux operating system, CUDA 2.2,
and NVIDIA Linux driver version 195.36.24. In all runs,
only one of the two GPUs on the GTX 295 card was used
while the other was kept idle. No monitors were attached to
either GTX 295 or GTX 480 cards. On GTX 295, maximum
performance is achieved with 64 CUDA threads per block,
while on GTX 480, the most optimal thread per block count
was 160. Simulations with the ES method were performed
in LAMMPS>*® on 32 CPU cores, that is, on four IBM
iDataplex blades with two quad-core 2.4 GHz Intel Xeon
E5520 processors, 48 GB of memory, and interconnected
through a DDR InfiniBand network.

4. Results and Discussion

The YR method requires O(N”) computations to evaluate
the total electrostatic energy, as opposed to O(N*'?) computa-
tions in the ES method. However, due to its simplicity,
computation of the electrostatic interaction in the YR method
requires a relatively small number of simple arithmetic
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Figure 3. Time steps per second against the number of
particles for the YR method on an NVIDIA GTX 480 GPU,
and the serial and parallel executions of the ES method on
an Intel Xeon computer cluster, for 0.1 M concentration of
monovalent salt. The time steps per second for the ES method
are defined per unit processor.

operations compared to significantly more complex calcula-
tions needed for the same evaluation in the ES method.
Therefore, the YR method is significantly faster than the ES
method even for 10° particles, as shown in Figure 3. The
performance gain is even higher when compared to the
parallel execution of the ES method, since a significant
amount of time is spent in communication between proces-
sors for this range of simulation sizes. Note that while the
YR method is free of adjustable parameters, the performance
of the ES method is sensitive to changes in the real-space
cutoff and the reciprocal space precision. We use a real space
cutoff of approximately one-fifth of the simulation box size
and the reciprocal space calculations were performed with a
precision of 107°. Simulations on the NVIDIA GTX 480
were approximately twice as faster as that on the NVIDIA
GTX 295.

Next, we evaluate the thermodynamic predictions of the
YR and ES methods for a range of concentrations of
monovalent and divalent electrolytes. The number of ions
in the simulation box can be chosen arbitrarily as long as
the electroneutrality condition is preserved. In this study, we
use 1912 ions, a number chosen to balance a full utilization
of the GPU with reasonably short execution times. The
calculated values of electrostatic energy and heat capacity
from the ES and YR methods are shown in Tables 1 and 2
for monovalent and divalent electrolytes, respectively. We
observed an excellent agreement between the two methods
for a wide range of concentrations—even for divalent ions,
where the electrostatic correlations are stronger. Note that
there is an appreciable difference in the heat capacities
obtained by the ES and the YR methods for dilute systems,
in particular for the monovalent case. We attribute this to
the inability of the MD to successfully equilibrate a dilute
system of charges,?’*® and we believe this is not a drawback
of the YR method.

To evaluate the concordance of the YR and ES methods
in reproducing the structural details of the electrical double
layer, we calculate the radial distribution functions, g4+ (r*)
and g.— (r¥), of the like- and unlike-charged ions, respec-
tively, where * = r/o is the reduced distance from the center
of the reference ion. These quantities are averaged from
snapshots taken every 10 time steps. Radial distribution
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Table 1. Average Electrostatic Energy per lon, E* =
(Ee))/Nks T and Heat Capacity per lon, C* = C,/Nkg
Calculated by the ES and YR Methods for 1:1 Bulk
Hydrated Electrolyte at Different Salt Concentrations (p)?

e [M] Egs EVr Cts Clr
1.0 —04470(4)  —0.4472(3)  0.095(1)  0.093(1)
075  —04144(3) —0.4145(4)  0.091(1)  0.094(2)
05 —03722(3)  —0.3721(3)  0.095(1)  0.092(1)
025  —03066(3) —0.3067(3) 0085(1)  0.084(1)
0.1 —02316(2)  —0.2319(3)  0.074(1)  0.077(1)
0075  -0.2105(1) -02106(3) 0.069(1)  0.072(1)
005  -0.1828(2) -0.1828(2)  0.062(1)  0.065(1)
0025  —0.1415(2) —01419(2) 0.055(1)  0.055(1)
001  —0.09829(5) —0.09842(3) 0.0424(2) 0.0428(2)
00075 —0.08712(6) —0.08713(4) 0.0366(2) 0.0375(1)
0005  —0.07329(4) —0.07331(2) 0.0314(2) 0.0321(1)
00025 -—0.05403(7) —0.05415(3) 0.0212(1) 0.0239(2)
0001  —0.03530(2) -0.03529(1) 0.0170(1) 0.0150(1)

2 Uncertainties in the last digit are indicated in parentheses.

Table 2. Average Electrostatic Energy per lon, E* =
(Ee))/Nks T and Heat Capacity per lon, C* = C,/Nkg
Calculated by the ES and YR Methods for 2:2 Bulk
Hydrated Electrolyte at Different Salt Concentrations (p)?

e [M] Ets EVr Cts oy
1.0 —2.056(3)  —2.056(4) 027(1)  0.28(1)
0.75 ~1.931(2) -1.931(3) 028(1)  0.28(1)
05 ~1773(2)  -1.773@2) 028(1)  0.30(1)
0.25 ~1533(2) —1533(2) 031(1)  0.31(1)
0.1 —1254(3)  —1.254(2)  0.32(1) 0.31(1)
0075  -1173(2) —-1.173(3) 031(1)  0.31(2)
0.05 -1063(2) -1.063(3) 031(2)  0.31(1)
0025  -0888(3) -0887(2) 030(1)  0.29(1)
0.01 —0676(2)  —0.675(3) 029(2)  0.26(2)
00075 —0616(2) —0.617(2)  024(1)  0.25(1)
0.005 ~0535(3)  —0535(3) 027(2)  0.25(2)
00025  —0.413(2) —0.414(2)  0.20(1) 0.21(1)
0.001 ~0283(1)  —0285(1)  0.159(3)  0.164(9)

2 Uncertainties in the last digit are indicated in parentheses.

functions calculated by the two methods show excellent
agreement, as is clear from the curves being virtually
indistinguishable in Figures 4 and 5. Further, in both
methods, g, (r*) and g+— (r*) approach one far from the
central ion and at the border of the simulation box, as shown
in the insets of Figures 4 and 5. This condition is necessary
to ascertain that the system is free of finite size effects, and
it is often not met in truncation schemes for handling
electrostatic interactions, even for significantly large simula-
tion box sizes.” For the monovalent ions at 0.01 M (Figure
4a), the contact values show an attraction and a repulsion
between unlike- and like-charged ions, respectively, as is
expected of bare Coulomb interactions. Interestingly, for the
1 M concentration (Figure 4b), the excluded volume of
hydrated monovalent ions leads to a slight attraction between
like-charged ions. For the divalent case at 0.005 M (Figure
5a), we observe repulsion and attraction of like- and unlike-
charged ions, respectively, that increased in comparison to
the monovalent instance at 0.01 M (Figure 4a). In addition,
at a 0.5 M concentration (Figure 5b) of divalent ions, we
observe a region of charge inversion between r* ~ 1.7 and
r¥ ~ 2.6.

A more stringent test is the calculation of the integrated
charge of ions,*®
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P =z+ [ Z zog, (A dr (19)

where p; is the bulk density of ion species j in the simulation
box. P{(r) corresponds to the net charge inside a sphere of
radius r centered at an ion of species i and hence measures
the neutralization of such an ion by the surrounding ionic
cloud. At the surface of an ion of species i (r = 0), the
integrated charge is equal to its valence z;, whereas suf-
ficiently far from the ion (r—e0), P,(r) approaches zero due
to the electroneutrality condition. P+ (r) is identical to —P—_(r)
for electrolytes symmetric in valence and size.

The integrated charge of a positive ion, P.(r*), for the
monovalent and divalent electrolytes are displayed in Figures
6 and 7, respectively. As expected from the radial distribution
functions, the concordance of the YR and ES methods is
very good for both monovalent and divalent salts, especially
near the ionic surface. The fluctuations in the integrated
charge near the border of the simulation box are displayed
in the insets of Figures 6 and 7. As a check of the global
electroneutrality condition, we require that the integrated
charge P(r*) approaches zero near the boundary, which is
indeed met by the two methods disregarding minor statistical
fluctuations. For the monovalent electrolyte at 0.01 M
concentration (Figure 6a), the profile of P.(r*) shows a
monotonic neutralization of the ionic charge. In contrast, for
1 M concentration (Figure 6b), a nonmonotonic neutralization
is observed. In fact, there is a region near the ionic surface
where the sign of the integrated charge is opposite the sign
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Figure 4. Pair distribution functions, g.+ (r) and g+— (r),
for 1:1 electrolyte at different concentrations. Bold and dashed
lines indicate the ES and YR methods, respectively. Notice
that the profiles obtained by the ES and YR methods are
virtually indistinguishable. Behavior near the box boundary is
shown in the insets.
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Figure 5. Pair distribution functions, g.+ (r) and g.— (r),
for 2:2 electrolyte at different concentrations. Bold and dashed
lines indicate the ES and YR methods, respectively. Notice
that the profiles obtained by the ES and YR methods are
virtually indistinguishable. Behavior near the box boundary is
shown in the insets.

of the central ion, indicating charge reversal. This behavior
is caused by the large excluded volume associated with the
hydrated monovalent ions. For the 0.005 M concentration
of divalent electrolyte (Figure 7a), a monotonic ionic
neutralization behavior akin to that of the 0.01 M monovalent
case (Figure 6a) is observed. However, for the 0.5 M
concentration of the divalent electrolyte (Figure 7b), the
magnitude of maximum charge reversal near the ionic surface
increased compared to the 1 M monovalent instance (Figure
6b), and several oscillations in the integrated charge are
observed.

5. Conclusion

We have implemented an efficient method for long-range
electrostatic interactions in the molecular dynamics on
graphics processing units (GPU) based on the scheme
originally proposed by Yakub and Ronchi.'* The method is
implemented in the MD package HOOMD Blue.?* In order
to test the accuracy of this method applied to the electrolyte
systems, thermodynamic and structural properties of bulk
hydrated monovalent and divalent salts were calculated. An
excellent agreement was found with respect to the conven-
tional Ewald summation method, available in LAMMPS. The
current implementation of the YR method is particularly
suited for moderate to high concentrations of charges. Its
limited applicability to dilute systems is not a flaw of the
method but, we believe, is an artifact of MD simulations
related to their inability to reach thermodynamic equilibrium
in a reasonable time. Additionally, the GPU implementation
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Figure 6. Integrated charge, P(r*), of the 1:1 electrolyte at
different concentrations. Bold and dashed lines indicate the
ES and YR methods, respectively. Notice that the profiles
obtained by the ES and YR methods are virtually indistin-
guishable. Fluctuations of the integrated charge near the
boundary of the box are shown in the insets.
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Figure 7. Integrated charge, P.(r*), of the 2:2 electrolyte at
different concentrations. Bold and dashed lines indicate the
ES and YR methods, respectively. Notice that the profiles
obtained by the ES and YR methods are virtually indistin-
guishable. Fluctuations of the integrated charge near the
boundary of the box are shown in the insets.
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is significantly faster than the fully optimized Ewald sum-
mation method for the simulation sizes commonly used in
simulations of electrolytes (10* to 10°).

We would like to mention that there is another class of
finite or short-range methods for electrostatic interactions
such as the Wolf method and its variations®' > that can
potentially also benefit from the GPU’s high FLOPS count.
However, in such schemes, the cutoff and the damping
constant must be calibrated for each particular system,
whereas the YR method is free of adjustable parameters. The
present implementation can be easily extended to study more
complicated systems including charged spherocylinders,*-*
nanoparticles and colloids,**?*°™*° asymmetric ionic li-
quids,** ~** and polyelectrolyte solutions and networks,*> 3
with the incorporation of the corresponding short-range
interactions that are already available in the GPU codes.
Efforts in these directions are currently underway.
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Abstract: The two lowest-energy gas-phase conformers, Ala-l and Ala-llA, of the natural amino
acid L-alanine (Ala) have been investigated by means of rigorous ab initio computations.
Born—Oppenheimer (BO) equilibrium structures (r5°) were fully optimized at the coupled-cluster
[CCSD(T)/cc-pVTZ] level of electronic structure theory. Corresponding semiexperimental (SE)
equilibrium structures (rs%) of each conformer were determined for the first time by least-squares
refinement of 11—15 structural parameters on modified, experimental rotational constant data from
10 isotopologues. The SE equilibrium rotational constants were obtained by, first, refitting Fourier
transform microwave spectra using the method of predicate observations and, second, correcting
the resulting effective rotational constants with theoretical vibration—rotation interaction constants
(o). Careful analysis is made of the procedures to account for vibrational distortion, which proves
essential to defining precise structures in flexible molecules such as Ala. Because Ala possesses
no symmetry, has several large-amplitude nuclear motions, and exhibits conformers with different
hydrogen bonding patterns, it is one of the most difficult cases where reliable equilibrium structures
have now been determined. The relative energy of the alanine conformers was pinpointed using
first-principles composite focal point analyses (FPA), which employed extrapolations using basis
sets as large as aug-cc-pV5Z and electron correlation treatments as extensive as CCSD(T). The
FPA computations place the Ala-llA equilibrium structure higher in energy than that of Ala-l by a
mere 0.45 kJ mol~" (38 cm ™), showing that the two lowest-lying conformers of alanine are nearly
isoenergetic; inclusion of zero-point vibrational energy increases the relative energy to 2.11 kJ mol ™"
(176 cm™"). The yet unobserved Ala-lIB conformer is found to be separated from Ala-llA by a

vibrationally adiabatic isomerization barrier of only 16 cm™".

l. Introduction

Flexible molecules have potential energy surfaces (PESs)
characterized by flat regions and low barriers for conforma-

* To whom correspondence should be addressed. E-mail: wdallen @
uga.edu (W.D.A.); csaszar@chem.elte.hu (A.G.C.).

" University of Georgia.

* Université de Lille.

¥ E6tvos University.

tional isomerization.! > L-Alanine (Ala) and all other natural
amino acids exhibit such characteristics and have a sizable
number of low-energy conformers.*” ' The primary differ-
ences between the conformers of gas-phase amino acids,
which exist exclusively in neutral form, are the number and
types of intramolecular hydrogen bonds occurring for various
configurations of the amino, carboxylic acid, and any polar
side-chain groups. In the case of Ala, the dihedral angle about
the central carbon—carbon bond, 7(0O = C—C,—N), remains

10.1021/ct1000236 © 2010 American Chemical Society
Published on Web 09/23/2010
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Figure 1. L-Alanine conformers |, llA, and IIB.

consistently near 0° or 180° for all conformers, despite the
variety of possible hydrogen bonds.

Experiments on the structure(s) of free Ala have included
gas-phase electron diffraction (GED),'"'? jet-cooled milli-
meterwave (MMW) and Fourier transform microwave
(FTMW) spectroscopy in molecular beams,>"'° and matrix-
isolation infrared spectroscopy.'®> The GED results for Ala
cannot provide a clear distinction between the multiple
conformers present at the elevated temperature of the
experiments. Moreover, the derived r,, rq, and 9 structural
parameters differ substantially from the corresponding equi-
librium (r.) values because of temperature-dependent
rotational —vibrational effects, which can be as large as those
induced by conformational changes. The low-temperature
MMW and FTMW molecular beam experiments™'° clearly
identified two gas-phase conformers, Ala-I and Ala-ITA
(Figure 1). The failure to observe other low-energy conform-
ers given by electronic structure computations*°~® has been
attributed to vibrational relaxation in the free-jet expan-
sions.”’ The matrix-isolation infrared experiments'® also
observed two conformers of alanine.

Select ry and r parameters for Ala-I and Ala-ITA have
been determined’ from two sets of FTMW rotational
constants involving 10 isotopologues of each conformer.
Unfortunately, this approach is not sufficient to obtain an
accurate, well-defined empirical structure. Equilibrium struc-
tures, free from undesirable isotopic, rotational—vibrational,
and temperature effects, are often difficult, if not impossible,
to obtain experimentally, especially for flexible molecules.
Vibrational distortion, arising from flat, anharmonic regions
on the PES, can greatly influence the effective, experimental
rotational constants, leading to sizable isotopic effects even
at low temperature. Consequently, for conformers of flexible
molecules, only equilibrium structures can be compared to
one another with any degree of validity. For example,

differences between the backbone structures of glycine and
alanine should be ascertained from r, parameters (see Section
1LF).

A protocol has been established whereby a semiexperi-
mental equilibrium structure (rs°) can be determined by first
correcting empirical, effective ground-state rotational con-
stants with ab initio vibration—rotation interaction constants
(a;) and then performing a structural refinement on the
resulting “experimental” equilibrium rotational constants
(B3%).2! This combined experimental and theoretical approach
has been successfully applied in many studies,”' —>* including
work that has given 5% structures for the lowest-energy
conformers of the neutral amino acids glycine (Gly)** and
proline (Pro).23 In this investigation, accurate SE structures
of Ala-I and Ala-ITA are determined after refitting spectro-
scopic constants to the observed rotational transitions,’
deriving BS® constants for 10 isotopologues of each con-
former, and imposing geometric constraints from Born—Oppen-
heimer equilibrium structures (#5°) obtained at the highest
feasible level of ab initio electronic structure theory [CCSD(T)/
cc-pVTZ, vide infra]. This is the first study to conjoin theory
and experiment to derive reliable equilibrium structures,
including detailed error analyses for both theoretical and
experimental procedures, for a molecule as large and flexible
as Ala.

All low-energy conformers of Ala possess intramolecular
hydrogen bonds that significantly stabilize these structures,
increase their rigidity, and provide challenges for electronic
structure theory, as shown in numerous previous ab initio
studies."”"'**3737 The sensitivity of Ala conformational
energies to the level of electronic structure theory has been
demonstrated by Csaszar,"” and Figure 2 vividly displays
the energetic variations observed’ for Ala-I, Ala-II(A/B),
and Ala-III(A/B). The Ala-III conformers are derived from
the Ala-I structure in Figure 1 by a 180° rotation of the
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Figure 2. Equilibrium energies relative to Ala-l at various levels of electronic structure theory.

—COOH moiety about the C—C, bond, the two variants
differing in whether the carboxyl O—H bond is oriented
toward (IITA) or away from (IIIB) the methyl substituent
at Cy.” Electron correlation reverses the energy ordering of
Ala-II(A/B) and Ala-ITI(A/B), in accord with known
deficiencies of Hartree—Fock theory in predicting confor-
mational energies of amino acids."'**® Strong basis set
dependence of conformational energies is also exhibited;
large basis sets with diffuse functions are necessary to fully
capture the differences in intramolecular hydrogen bonding
interactions. In this work, the relative energy of Ala-IIA with
respect to Ala-I in the nonrelativistic, ab initio limit is
determined by applying the composite focal point analysis
(FPA) approach®*~** that has been used successfully in
previous studies on amino acids'"*'*?*>* and many other
species. 10434550

Il. Computational Methods

II.A. Semiexperimental Equilibrium Structures. The
derivation of r5F structures involves three main steps:
optimization of reliable r2° structures, computation of an
ab initio cubic force field with subsequent evaluation of q;
constants to extract equilibrium BSF parameters from the
experimental rotational constants, and a tight least-squares
structural fit to selected BSF values for several isotopologues,
incorporating r2© constraints as necessary. In this study, the
r8° geometries of Ala-I and Ala-ITA were fully optimized
using frozen-core (FC) CCSD(T) coupled-cluster theory”' >?
paired with the correlation-consistent cc-pVTZ basis set of
[4s3p2d1f] and [3s2pld] quality for {C, N, O} and H,
respectively.>* While the inclusion of core electron correla-
tion during these demanding geometry optimizations was not
feasible, the corresponding effects®> on the 5 parameters
are expected to lie within the uncertainties of most rSE
parameters and are partially corrected during the least-squares
fit. Geometry optimizations were carried out in natural
internal coordinates®®>’ using a quasi-Newton—Raphson
method implemented in the PSI3 package.’® The optimization

of highly flexible coordinates was facilitated with a fixed
Hessian matrix evaluated at the MP2 level with a (9s5p)
double-& valence basis set>® (DZ) at a point near the target
minimum. Energy gradients were computed by finite differ-
ences of energies provided by the MOLPRO® package using
a five-point central difference formula to ensure numerical
accuracy for both high- and low-frequency modes. Finally,
minima were verified by evaluating the molecular gradients
analytically using the MAB-ACESII®' program. Cartesian
coordinates of the CCSD(T)/cc-pVTZ rBO structures of Ala-I
and Ala-IIA are provided in Supporting Information (Table
S1).

For both conformers of Ala, anharmonic force fields were
determined at the all-electron MP2/6-31G(d)®? level at the
corresponding minima to avoid the nonzero force dilemma.®?
The cubic and semidiagonal quartic force constants in normal
coordinates were evaluated by numerical differentiation of
analytically computed second derivatives. Built-in features®*
of MAB-ACESII then gave the vibration—rotation interaction
constants for all isotopologues according to the second-order
vibrational perturbation theory®® (VPT2) formula

> + XS

E=ab.c 5 j&i) i j
3 )”22@,,, o )] m

in which indices (i,j) denote normal coordinates (Q;, Q;) with
harmonic vibrational frequencies (w;, w;), I is a principal
moment of inertia, a’* is a first derivative of inertial tensor
element /,: with respect to Q;, Cf} is a Coriolis coupling
constant, and ¢;; is a cubic force constant in the reduced
normal coordinate space. In lowest-order and without
centrifugal distortion corrections, the effective ground-state
rotational constants (Bj) are related to their equilibrium
counterparts by the expression

2B’
of = ——¢
w;

3(a®)? (3a) + o)




Lowest-Lying Conformers of Alanine
bE\2

1 B 2 3 (ai )
B, —B,= = = —B|~ —
e 0 2 Z az L[4 % wi1§

b2, 2
Z(Cij) (0; — w) N ﬂ(%)mz ¢iija];?bwj3/2] ?)

P www; + w)

r
which was employed in this study to obtain semiexperimental
BSE constants. Note that all Coriolis resonance terms
appearing in eq | are canceled in the reduced form on the
right side of eq 2, an important point often not fully
appreciated.

The weighted least-squares refinement®® ®® for the
structures employed linear combinations of simple valence
internal coordinates and was carried out with the MolStruct®
code. The weights were chosen as the reciprocal statistical
uncertainties in the experimentally derived rotational con-
stants. For both Ala-I and Ala-IIA, experimental data is
available for ten isotopologues, yielding 30 B constants
each (Supporting Information, Table S2). However, not all
of these constants proved suitable for the rSE refinements.
Because Ala-I and Ala-ITA possess no symmetry, the
number of independent geometric parameters (33) is greater
than the experimental data set, necessitating the use of yBO
structural constraints. The least-squares refinements were
performed on select sets of internal coordinates and rotational
constants. Within least-squares fits, the standard errors
intrinsic to each variable and the deviations for the rotational
constants were monitored carefully.

S

The success of the 72F procedure depends on the number
of isotopologues with accurate experimental rotational
constants that can be used to determine meaningful structural
parameters, the accuracy of the anharmonic force fields and
theoretical @; constants, the quality of the B0 least-squares
constraints, and the validity of modeling vibrational effects
via first-order vibration—rotation interaction (eq 2). The
utility of o; constants suffers more from the inherent
approximations within VPT2 for large, flexible molecules
with highly anharmonic vibrational modes than for small,
rigid molecules exhibiting predominantly harmonic motions
and small rovibrational couplings. By employing eq 2,
higher-order vibration—rotation interactions and centrifugal
distortion are neglected, despite their enhanced significance
for flexible molecules. Centrifugal distortion contamination
appears in both the experimental rotational constants and the
theoretical correction of By to extract BSE.”? Thus, while the
effective rotational constants of certain isotopologues may
describe the observables accurately, caution must be exer-
cised in using these constants to refine the semiexperimental
structure.

IL.B. Conformational Energetics. The method of focal
point analysis (FPA)**~** provides a means of systematically
approaching and monitoring convergence of ab initio com-
putations toward the one-particle complete basis set (CBS)
limit and the fully correlated many-electron wave function
(full configuration interaction, FCI). In this study, an FPA
investigation of the Ala-IIA—Ala-I relative energy was
executed with correlation-consistent basis sets augmented
with diffuse functions,”*”! aug-cc-pVXZ (X =D, T, Q, 5).
Hartree—Fock (X =T, Q, 5) and MP2 (X = Q, 5) energies

J. Chem. Theory Comput., Vol. 6, No. 10, 2010 3069

were extrapolated to the CBS limit using standard exponen-
tial and inverse cubic formulas, respectively.’>’® Higher-
order correlation effects were incorporated by means of
additive CCSD/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ
increments. Core correlation was included by appending the
difference between all-electron and frozen-core CCSD(T)/
cc-pCVTZ results to the valence FPA limit. The frozen-core
CCSD(T)/cc-pVTZ r8° geometries were adopted as reference
structures in the FPA computations.

The zero-point vibrational energies (ZPVEs) of Ala-I and
Ala-ITA were first computed from the MP2/6-31G(d) an-
harmonic force fields via the expression

ZPVE=%;wi+%2xij 3)

i<j

where y; denotes the second-order vibrational anharmonicity
constants derived from VPT2.%° The effect of anharmonicity
on the ZPVE correction (Azpvg) to the Ala-IIA—Ala-I
energy separation was less than 0.02 kJ mol ', Therefore,
our final Azpyg value (+1.66 kJ mol ') was evaluated from
harmonic vibrational frequencies computed at the highest
feasible level of theory, all-electron MP2 with a pared aug-
cc-pVTZ basis set.”*

lll. Results and Discussion

IIL.A. Lowest-Energy Conformers of Ala. Extensive
conformational searching for Gly'* and Ala,*®’ the two
smallest amino acids, has revealed 8 and 13 distinct
conformers, respectively. An unmistakable correspondence
exists between the Gly and Ala conformers because both
have inert side groups (—H for Gly, —CHj; for Ala) leading
to the same intramolecular hydrogen bonding possibilities.
A bifurcated hydrogen bond forms between the carbonyl
oxygen atom and the amino hydrogen atoms in the global
minima Gly-I and Ala-I. Upon ~180° rotation of the
—COOH plane, hydrogen bonding occurs with —OH as the
proton donor and —NH, as the acceptor, resulting in the Gly-
IIn and the Ala-II conformers. The suffix in the Gly-IIn
designation indicates a non-planar backbone, although ac-
curate FPA computations find a barrier to planarity of only
21 & 5 cm™'.** The two Ala structures corresponding to
Gly-IIn exist as a nearly isoenergetic pair, Ala-IIA and Ala-
IIB, having the same H-bonding arrangement but different
orientations of the methyl group (Figure 1). Ala-I has
repeatedly been observed as the predominant conformer in
the rotational spectra of alanine,”>*'® in accord with high-
level theoretical results. In fact, large basis CCSD, CCSD(T),
and MP4 single-point energy computations at MP2/
6-311++G** optimum geometries determine Ala-I to be
more stable than the Ala-II conformers by 200—300 cm ™.’
The same levels of theory predict that the next conformers
(Ala-III) are, again, 200—300 cm ™' higher in energy than
the Ala-II conformers. While the Ala-I and Ala-IIA
conformers were identified>® in the observed rotational
spectra by "N nuclear quadrupole coupling, Ala-IIB and
higher-energy conformers were never observed.

Prior speculation on the absence of Ala-IIB in the
observed rotational spectra was based on a presumably low
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interconversion barrier for Ala-IIB — Ala-ITIA. To elucidate
this issue, we computed CCSD(T) energy points with the
aug-cc-pVTZ basis set at the MP2/6-311++G(d,p) stationary
structures of Ala-ITA, Ala-IIB, and the connecting transition
state optimized in this work. The resulting well depth of Ala-
IIB with respect to the interconversion barrier is only 34
cm™ ', which is reduced to a minuscule 16 cm™' upon
vibrational correction. To obtain this vibrationally adiabatic
barrier, MP2/cc-pVTZ harmonic frequencies were computed,
and ZPVEs were evaluated by excluding at each stationary
point the contribution from the normal mode connecting Ala-
ITIA to Ala-IIB. In summary, the small amount of energy
required to interconvert the Ala-II conformers is indeed
representative of the conformational flexibility of Ala and
may rationalize the absence of Ala-IIB in the molecular
beam experiments.>*7>7°

ITI.B. Refitting the Rotational Spectra of Ala. Before
determining SE structures, we refit the existing rotational
spectra of alanine to more firmly establish the rotational
constants and their uncertainties for the structural analysis.
In the original spectroscopic study,” the rotational, centrifugal
distortion, and nuclear quadrupole hyperfine constants of
alanine were simultaneously determined from a global fit of
a chosen Hamiltonian to the measured transitions. From a
statistical point of view, this method is meritorious and has
the advantage of being simple. However, overly optimistic
uncertainties are produced when the data set for the global
fit is small, as is the case here. Moreover, from a numerical
perspective, correlations are induced between the centrifugal
distortion constants and the remaining rotational parameters,
worsening the condition number.”” Finally, “masked” errors
that do not yield outlying residuals become more prevalent.”®
For these reasons, we first corrected the transitions for the
nuclear quadrupole hyperfine structure and then fit the
hypothetical unperturbed rotational transitions to a standard
Watson Hamiltonian.” It could be argued that this approach
might give biased rotational parameters containing systematic
errors due to inaccuracies in the nuclear quadrupole hyperfine
constants. However, when several hyperfine components of
the same rotational transition are measured, as for a great
majority of the reported transitions,” the hypothetical,
unperturbed frequencies may be calculated using the intensity-
weighted mean of the multiplets.*® As a consequence,
accurate knowledge of the nuclear quadrupole hyperfine
constants is unnecessary and the possible contribution of the
spin-rotation interaction is canceled. Furthermore, our ap-
proach permits the elimination of outliers, the estimation of
the uncertainty of the measurements, and an increase in the
reliability of the rotational frequencies.

Another issue in the original fits® is that the full set of
quartic centrifugal distortion constants was not determinable
for many isotopologues, and hence these constants were fixed
to values for the parent (or '°N) species. Our computations
revealed significant variations in the centrifugal distortion
constants from one isotopologue to another (vide infra).
Therefore, we used the method of predicate observations®!
in our refitting, in which the ab initio “scaled” centrifugal
distortion constants (or the constants of another isotopologue)
are input data in a weighted least-squares fit. Though this
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method permits the approximate determination of the cen-
trifugal distortion constants, it must be used with care, and
it is essential to check that the derived constants are really
compatible with the experimental data. In our fits the weights
of the predicate observations were varied to keep the
corresponding “‘jackknifed” residuals, #(7), small (typically
less than 3), where #(i) is the ith residual divided by its
standard deviation calculated by omitting the ith transition.”®

Parent values and isotopic shifts for the effective rotational
constants and quartic centrifugal distortion constants of the
Ala-I and Ala-ITA isotopologues are reported in Tables 1
and 2, respectively. Three sets of data are tabulated: our
results from refitting the observed lines (refit), our CCSD(T)/
cc-pVTZ theoretical values (theor), and the original experi-
mental constants (expt).” Rotational constant shifts associated
with heavy-atom (non-hydrogen) isotopic substitution exhibit
modest differences (2—5 kHz) between original and refit
values and are relatively independent of the method used to
fit the rotational spectra. However, much larger deviations
are found between the original and refit values for many of
the D-substituted isotopologues. The largest discrepancies
(in kHz) are 868 for By of O—D (Ala-I), 476 for A, of
C,—3D (Ala-ITA), 84 for Ay of N—D, (Ala-I), 47 for A of
N—D, (Ala-IIA), and 46 for B, of C,—3D (Ala-IIA).
Comparing these discrepancies to the average residual of the
structural fits for Ala and Gly, around 20 kHz (ref 24 and
below), it becomes clear that these rotational constants should
not be given much weight in the determination of r5F
structures.

The theoretical isotopic shifts (Tables 1 and 2) are based
on (A, By, Cp) constants, which are determined by conjoining
our MP2/6-31G(d) vibration—rotation interaction constants
and CCSD(T)/cc-pVTZ equilibrium rotational constants
(B2©). The theoretical and experimental heavy-atom isotopic
shifts of the (Ao, By, Co) constants are generally in remarkable
agreement. The mean absolute deviations between refit and
theor isotopic shifts among the ('*C, '*C,, "*C., '“N)
isotopologues are 0.2 and 0.4 MHz in the Ala-I and Ala-
ITA cases, respectively. On the other hand, most isotopic-
shift disparities for the deuterated isotopologues are greater
than 1 MHz. The proximity of the Dy, position to the methyl
group seems to enhance the error in the vibrationally
corrected rotational constants of the N—Dy isotopologue,
especially in comparison to N—D,. The two largest absolute
discrepancies are (8.7, 3.5) MHz for [A¢(Ala-IIA), By(Ala-
D] of the triply deuterated methyl isotopologues, C,,—3D.
Nevertheless, on a percentage basis, the discord between the
refit and theor isotopic shifts is less than 2% even in these
instances. For the centrifugal distortion constants, the refit
and theor isotopic shifts agree quite well for Ala-I, similarly
to other molecules.??%% However, considerable differences
occur for the Ay, Ak, and Ok isotopic shifts of Ala-IIA.
The underlying cause is not transparent and is not specific
to the deuterated isotopologues.

Relevant to the structure refinements, the number of fitted
transitions for the '°N isotopologues of Ala-I and Ala-TTA
is relatively small. This is particularly true in the Ala-ITA
case, where 17 lines were used to determine 8 parameters
(3 rotational and 5 quartic centrifugal distortion constants).
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Table 1. Isotopic Shifts of Effective Rotational Constants (Ao, By, Co) and A-Reduced Quartic Centrifugal Distortion
Constants (Ay, A, Ak, dy, Ok) for Ala-l: Original Experimental Constants from Ref 5 (expt), Current Refitting of Observed
Lines (refit), and CCSD(T)/cc-pVTZ Theoretical Values (theor)?

constant parent 3C 13Cy 3Cm SN Co—D Cm—3D O0-D N—Da, N—Dp, MAD
Aoexpt 5066.1456(4) —0.941 —8.821 —95.254 —48.851 —113.253 —462.026 —13.968 —104.850 —176.847
refit ~ 5066.1455(7) —0.941 —8.821 —95.254 —48.851 —113.250 —462.025 —13.965 —104.934 —176.846 0.777
theor 5031.4685 —0.939 —8.995 —94.714 —48.400 —112.952 —459.265 —12.775 —104.774 —175.431
Boexpt 3100.9506(3) —9.668 —12.419 —33.767 —50.457 —51.813 —175.397 —109.991 —57.095 —49.805
refit  3100.9507(5) —9.667 —12.421 —33.767 —50.458 -51.818 —175.404 —110.859 —57.103 —49.804 1.347
theor 3067.4442 —-9.505 —12.209 —33.324 —50.093 —50.240 —171.944 —109.247 —54.348 —48.269
Coexpt 2264.0134(2) —5.178 —5.343 —31.628 —34.806 —5.462 —141.514 —61.745 —41.615 —45.195
refit  2264.0131(4) —5.178 —5.342 —31.628 —34.806 —5.458 —141.510 —61.749 —41.608 —45.197 0.307
theor 2258.8416 —5.199 —5.370 —31.518 —34.921 —6.150 —141.609 —61.727 —40.245 —44.884
Ay expt 2.452 —0.035 —0.029 —0.069 —0.121 —0.026 0 0 0 0
refit 2.445(7) —0.024 —0.086 —0.072 -0.113 -0.138 -0.312 —0.262 —0.281 0.007 0.033
theor 2.409 —-0.027 —0.040 —0.042 —0.100 —0.195 —0.325 —0.245 —0.262 0.108
Ak expt —6.391 0.052 0 0.324 0.112 0 0 0 0 0
refit —6.38(1) 0.03 0.45 0.29 0.11 0.74 1.61 0.69 0.77 —0.74 0.08
theor —6.373 0.104 0.127 0.292 0.126 0.590 1.613 0.634 0.694 —0.741
Ak expt 5.410 0.022 0 -0.21 0.124 0 0 0 0 0
refit 5.37(5) 0.07 —0.09 -0.18 0.15 —0.69 -1.55 -0.28 —0.36 0.53 0.08
theor 5.424 -0.077 -0.114 —0.298 —0.032 —0.568 -1.570 —0.324 —0.413 0.478
0y expt 0.5696 0.0013 —0.0216 —0.0109 —0.0294 0 0 0 0 0
refit 0.574(2) 0.008 —0.028 —0.010 —0.033 —0.061 —0.094 —0.066 —0.084 0.058 0.009
theor 0.570 —0.009 —0.014 —0.011 —0.023 —0.070 —0.095 —0.053 -0.077 0.064
Ok expt 10.3777 0.0083 0.2823 —0.4577 —0.3647 0.5423 0 0 0 0
refit 10.37(3) 0.07 —0.31 —0.36 -0.34 -0.71 —1.80 —0.11 -1.36 0.22 0.13
theor 9.656 —0.025 —0.058 —0.297 -0.273 -0.775 —1.734 —0.303 —1.442 —0.042
2 Units: MHz for (Ao, Bo, Co) and kHz for (Ay, Ak, Ak, 04, Ok); MAD = mean absolute deviation between refit and theor isotopic shifts.

Large deviations of theoretical and experimental rotational constants are italicized. The CCSD(T)/cc-pVTZ rotational constants include MP2/
6-31G(d) vibrational corrections.

Table 2. Isotopic Shifts of Effective Rotational Constants (Ao, By, Co) and A-Reduced Quartic Centrifugal Distortion
Constants (Ay, Ay, Ak, 04, Ox) for Ala-llA: Original Experimental Constants from Ref 5 (expt), Current Refitting of Observed

Lines (refit), and CCSD(T)/cc-pVTZ Theoretical Values (theor)?

constant parent 3C 13Cq 3Cm SN Co—D Cm—3D 0-D N—D, N—Dp MAD
Ao expt  4973.0558(6) —-0.138 —10.402 —88.351 —54.385 —115.510 —441.476 —138.202 —35.075 —164.893
refit 4973.0546(35) —0.136 —10.399 —88.356 —54.384 —115.537 —441.952 —138.198 —35.028 —164.887 2.566
theor 4950.175 -0.177 —-11.079 —88.826 —53.339 —117.566 —433.218 —134.674 —31.794 —168.219
By expt  3228.3379(5) —12.458 —-13.622 —39.366 —42.997 —54.464 —-198.172 —8.122 —114.542 —77.573
refit 3228.3375(56) —12.456 —13.622 —39.366 —42.997 —54.462 —198.218 —8.124 —114.543 —77.576 1.910
theor 3183.801 —-12.216 —13.218 —-38.315 —42.527 —51.598 —195.056 —7.333 —113.036 —70.879
Coexpt  2307.8090(3) —-6.190 —5.382 —33.334 —31.976 —8.888 —148.755 —27.187 —61.942 —44.052
refit 2307.8090(42) —6.191 —5.382 —33.333 —-31.977 —8.890 —148.704 —27.182 —61.935 —44.047 0.858
theor 2316.254 —6.326 —5.539 —33.356 —32.264 —10.313 —148.500 —26.600 —65.042 —45.800
Ay expt 2.13(1) 0.038 —0.036 0.036 —0.004 —0.055 —0.004 —0.004 —0.004 —0.004
refit 2.11(6) 0.10 —0.02 0.09 0.01 —0.06 —0.06 —0.01 0.16 —0.01 0.09
theor 1.397 —-0.016 —0.022 —-0.016 —0.055 -0.107 —0.152 0.016 —0.149 —0.086
Ak expt —4.84(6) —-0.175 0.207 0.199 —0.358 —0.358 —0.358 —0.358 —0.358 —0.358
refit —4.8(3) -0.37 0.13 —0.03 —0.43 —-0.18 —-0.18 -0.27 -0.17 -0.25 0.37
theor —2.611 0.047 0.055 0.067 0.098 0.232 0.459 —0.100 0.306 0.279
Ak expt 4.98(2) 0 0 0 0 —0.002 —0.002 —0.002 —0.002 —0.002
refit 4.6(5) 0.67 0.44 —0.63 0.43 0.42 0.42 0.44 0.43 0.43 0.64
theor 2.772 —0.032 —0.069 —0.092 —0.058 —0.328 —0.574 0.009 —-0.124 —0.390
oy expt 0.41(1) —-0.010 —-0.025 -0.015 —0.0087 —0.009 —0.009 —0.009 —0.009 —0.009
refit 0.41(2) —-0.01 —0.03 —0.04 —0.01 —0.01 —0.01 —-0.01 —0.01 —0.01 0.02
theor 0.257 —0.004 —0.006 —0.0002 —0.012 —0.033 —0.025 0.007 —0.023 —0.047
Sk expt 7.35(1) 0 0 0 0 0 0 0 0 0
refit 7.2(7) 0.59 0.11 0.26 0.15 0.97 0.97 -1.79 —1.68 —-1.78 1.02
theor 4.686 —0.008 —0.026 -0.172 -0.127 —0.388 —0.940 —0.320 —0.099 —-0.317

2 Units: MHz for (Ao, Bo, Co) and kHz for (Ay, Ak, Ak, 04, Ok); MAD = mean absolute deviation between refit and theor isotopic shifts.

Large deviations of theoretical and experimental rotational constants are italicized. The CCSD(T)/cc-pVTZ rotational constants include MP2/

6-31G(d) vibrational corrections.

Accordingly, the standard deviation of the '*N(Ala-IIA) fit
is only 0.2 kHz, less than 10% of the estimated experimental
accuracy (3 kHz). For this reason, the standard deviations
of the '°N parameters are perhaps one order of magnitude
too small.

Highly anharmonic vibrational motions, such as the
internal rotation of the methyl group, twisting along the
backbone, or fluid rocking motion of the amino group,
complicate the determination of vibrational corrections to

the effective experimental rotational constants. Fortunately,
for isotopologues that exhibit similar vibrational effects as
the parent, the error in the vibrational corrections is
systematic and the least-squares refinement can still produce
equilibrium structures with small standard errors. The
statistical outliers (among the rotational constants) stem from
isotopologues for which the substituted atom undergoes
large-amplitude, anharmonic motion or yields large isotopic
shifts. As such, isotopic substitutions at peripheral hydrogen
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reo semiexperimental re

parameters® CCSD(T)/cc-pVTZ Fit 1 Fit 2 Fit 3
AC—Cy) 1.5236 1.519(2) 1.518(2) 1.520(3)
ACo—Chm) 1.5316 1.524(4) 1.526(3) 1.522(4)
HCa—N) 1.4570 1.446(4) 1.445(3) 1.448(4)
AC=0) 1.2085 1.208(6) 1.208(5) 1.207(7)
HC—0) 1.3551 1.347(5) 1.348(4) 1.349(6)
AN—H)avg 1.0156 1.0156 1.0156 1.014(4)
Z(C—Co—Chn) 108.70 109.0(2) 108.8(2) 109.0(3)
Z£(C—Cq—N) 113.24 113.4(3) 113.5(3) 113.3(4)
Z(Coq—C=0) 125.36 124.8(4) 126.1(4) 125.1(4)
Z£(0—C=0) 122.81 122.7(1) 124.9(3) 122.7(2)
Z(C—0—H) 105.82 105.82 105.82 105.9(6)
Z(C—Co—H) 107.39 107.39 107.39 106.5(5)
7(0—C—Co—Chm) ~73.65 ~71.9(3) ~71.8(3) ~71.9(4)
7(0—C—Co—H) 43.98 43.98 43.98 47.5(9)
7(0 = C—Co—N) -17.27 ~16.2(5) ~16.1(4) ~16.2(8)

CCSD(T)/cc-pVTZ r8° constraints

HO—H) 0.9680 Z£(Ca—Cm—H)pif —0.54

ACo—H) 1.0925 Z(Co—Cm—H)piti2 2.02

AN—H)pi 0.0012 7(0=C—0—H) -0.90

HCm—H)avg 1.0911 7(Coa—C—0—H) 177.80

NCm—H)opitr1 0.0075 7(C—Co—N—Ha) 54.01

MCm—H)piti2 0.0007 7(C—Cy—N—Hp) —59.37

Z(Coq—N—H)ayg 108.66 7(H=Cy—Cm—Hy) 180.86

Z(Ha—N—Hp) 104.72 7(H—Ca—Cm—Ho) —58.90

2(Ca—Cm—H)avg 110.08 7(H—Cu—Cm—Ha) 62.11

coordinate definitions

AN—H)avg = [(N—Ha) + n(N—Hy)])/2

fN—H)pitt = [(N—Ha) — (N—Hp)]

Z(Co—N—H)avg = [£(Co—N—Ha) + £(Co—N—Hp)l/2
HCn—H)avg= [MCn—H1) + ACn—Hz) + (Cn—Ha)V'3
NCm—H)pitt1 = 2[(Cm—H1)] — (Cm—Hz) — (Cm—Ha)
ACm—H)pitre = ACm—H2) — (Cm—Ha)

Z(Co—Cm—H)avg = [£(Coa—Cm—H1) + £(Ca—Cm—Hz) + £(Cu—Cm—Ha))3
£(Ca—Cm—H)pittt= 2[£(Ca—Cm—H1)] = Z(Co—Cm—Hz) — £(Ca—Cm—Hs)

Z(Ca_Cm_H)DiffZ = Z(Cu_cm_Hz) - Z(Ca—cm—Ha)

2 Distances in A, angles in deg. Boldface denotes parameters included in the least-squares fits. Note that in Fits 1 and 2, all hydrogen
atoms were fully positioned by the constraints, whereas Fit 3 provided four internal coordinates involving hydrogen atoms. ? Refer to Figure

1 for atom labels.

atoms may be difficult to fit and should be treated judiciously
to avoid vibrational contamination of r5F structures.

ILC. r5¥ Structure of Ala-I. The semiexperimental
structures of Ala-I resulting from three different least-squares
refinements, labeled Fit 1 through Fit 3, are reported in Table
3, along with the associated frozen-core CCSD(T)/cc-pVTZ
B0 parameters/constraints. The values refined in each fit are
highlighted in boldface type with standard errors in paren-
theses, whereas all other parameters necessary to define the
molecular structure were constrained to the CCSD(T)/cc-
pVTZ values listed in normal type. In Fit 1 only the rotational
constants of the parent and isotopologues involving heavy-
atom substitution were used; accordingly, all hydrogen atoms
were fully positioned by the r£© constraints. By omitting
the deuterated species, the errors in the BSE data arising from
large-amplitude vibrational effects are reduced and become
more systematic. In Fit 1, the weighted root-mean-square
(rms) residual of the 15 chosen rotational constants is only
16 kHz, and the standard errors of the fit for bond distances
and angles are no greater than 0.007 A and 0.6°, respectively.
Clearly, the rotational constants of the parent, the 5N, and

the three unique "*C isotopologues provide enough informa-
tion to determine the positions of all heavy atoms in Ala-I.
Nonetheless, even in the highly constrained Fit 1 some of
the optimized parameters are strongly correlated, hindering
their explicit determination. The introduction of further
constraints, for example fixing either r(C—0) or n(C=0),
gave similar results. We note that the standard deviations of
the r$¥ (Fit 1) parameters are underestimations because the
uncertainty of the several fixed parameters is not taken into
account.

Fit 2 employed the same structural variables and con-
straints as Fit 1 but added selected rotational constants from
the deuterated isotopologues to the B3® data set. In particular,
Fit 2 included ASE(C,—D), BSE(C,—3D), BSE(O—D),
CSE(0—D), ASE(N—Dy), and CSF(N—Dy,), all of which had
a residual <0.5 MHz in Fit 1. Fit 2 reduces the standard error
of each structural parameter (Table 3) vis-a-vis Fit 1, while
maintaining a reasonably small residual (24 kHz).

Fit 3 incorporated all of the observed rotational constants
except those for the C,,—3D and N—D, isotopologues; in
addition, BSE(N—Da) was excluded and the weight of
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CfE(N—Da) was decreased, making the N—D, isotopologue
less influential in the fit. Problems with nonsystematic errors
necessitating exclusion of rotational constant data for the
Cn—3D, N—Dy, and N—D, isotopologues were identified in
section III.B above. The expanded data set for Fit 3 allowed
some hydrogen-atom coordinates to be refined, the tightest
fit to the data (weighted rms of 25 kHz) being obtained by
releasing r(N—H)ay,, £(C—Cy—H), Z(C—0O—H), and
7(0—C—C,—H). Additional parameters could not be refined
without introducing large deviations in both hydrogen- and
heavy-atom positions. In this regard the structures of the
methyl and carboxyl groups are under-determined by the
experimental data, due to the lack of isotopic substitution
on the oxygen atoms and on individual methyl hydrogen
atoms. In summary, Fit 3 provides the best currently possible
r3E structure of Ala-I by refining 15 of the 33 geometric
degrees of freedom on 23 vibrationally corrected, semiex-
perimental equilibrium rotational constants.

IILD. r5¥ Structure of Ala-ITA. One satisfactory fit was
achieved for the semiexperimental structure of Ala-ITA.
Initially, incorporating only rotational constants of heavy-
atom isotopologues and structural parameters involving
heavy-atom positions, as in Fit 1 of Ala-I, resulted in an
roF structure that had surprisingly large standard errors and
poor agreement with the CCSD(T)/cc-pVTZ r5° parameters.
Most notably, the semiexperimental C—O distance had a
standard error of 0.02 A and was 0.04 A shorter than the
CCSD(T)/cc-pVTZ value, while the fit to the '°N data was
poor. As mentioned above, the '°N assignments and the fitted
data appear to be correct, but the originally reported and
refitted uncertainties are probably too optimistic. Therefore,
the structure of Ala-ITA was determined again after increas-
ing the experimental uncertainties (reciprocal weights in the
least-squares fit) of the three '°N rotational constants by a
factor of 20. This modification, labeled Fit 1’, was validated
by an approximate one-half reduction in the standard errors
of the structural parameters. The C—O bond distance
displayed an error of £0.01 A and became a much more
reasonable 0.01 A shorter than the rBO value. The final
structural parameters of Ala-IIA refined in Fit 1” are reported
in boldface in Table 4, along with the CCSD(T)/cc-pVTZ
constraints invoked. While the success of the Ala-IIA fit is
gratifying, the statistical errors are significantly larger than
observed for Fit 1 of Ala-L.

Attempts to incorporate rotational constants of the deu-
terated isotopologues in the structural refinement of Ala-
ITA did not reduce the statistical errors. Including the only
two rotational constants that had residuals under 0.5 MHz
in Fit 1’ did not improve the heavy-atom structural param-
eters, unlike Fit 2 of Ala-I. Fitting the data for the C,—3D
and N—D, isotopologues once again proved problematic.
Adding the O—D rotational constants and releasing the
Z(C—0O—H) parameter distorted the Ala-ITA structure
considerably, causing the carbonyl bond distance to deviate
from the r5© value by an unacceptable 0.1 A. Other
parameters for the hydroxyl hydrogen atom were released
with similar or more pronounced distortion of the overall
structure. Therefore, the BSE data for the O—D isotopologue
are disappointingly unable to yield the structure within the
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Table 4. Equilibrium Structures of Ala-llA?

parameters?  CCSD(T)/cc-pVTZ semiexperimental re (Fit 1)
AC—Cy) 1.5347 1.530(3)
ACa—Ch) 1.5282 1.529(4)
fCu—N) 1.4726 1.460(4)
HC=0) 1.2052 1.205(9)
fC—0) 1.3431 1.33(1)
Z(C—C4—Chm) 108.08 108.2(3)
Z(C—Co—N) 109.44 109.8(4)
Z£(Cy—C=0) 122.66 122.0(8)
Z(0—C=0) 123.27 123.2(4)
7(0—C—Co—Cn) 257.77 254.5(4)
7(0=C—Co—N) 195.28 192.5(5)

CCSD(T)/cc-pVTZ E° constraints

HO—H) 09789  Z(Co—Cm—H)avg 110.18
nCq—H) 1.0926 Z(Co—Cm—H)pi1 —0.60
f(N—H)avg 1.0132 Z(Co—Cm—H)pitr2 —0.33
r(N—H)pits 0.0009 7(0—C—Cy—H) 140.31
(Cm—H)avg 1.0915 7(0=C—0—H) 178.18
MCm—H)pitr1 —0.0067 7(Co—C—0O—H) —4.10
ACm—H)bitre 0.0005 7(C—Co—N—H,) 89.86
Z(C—O—H) 104.26 7(C—Co—N—Hp) 208.10
£(C—Cq—H) 106.67 7(H—Co—Cm—H1) 60.01
Z(Ha—N-Hp) 106.90 7(H—Co—Cm—Ho) 179.80
Z(C—N-H)ag  110.61 7(H—Co—Cm—Hs)  —60.14

@ Distances in A, angles in deg. Boldface denotes parameters
included in the least-squares fits. Note that in Fit 1” all hydrogen
atoms were fully positioned by the constraints. © Refer to Figure 1
for atom labels and Table 3 for coordinate definitions.

strong OH-+**N hydrogen bond. In summary, only the
experimental rotational constants of the heavy-atom isoto-
pologues yield useful information, and thus the 75 structure
of Ala-IIA is considerably less well determined than that of
Ala-1.

IILE. Discussion of the Ala Structures. A comparison
of prior experimental ry, ry, 1, ro, and ry parameters with
the current r5F and r2© results is made in Tables 5 and 6 for
Ala-I and Ala-ITA, respectively. Considerable vibrational
effects are present in all previous experimental structures,
and several structural parameters exhibit disturbing differ-
ences. The disparities are more prominent for the bond
distances than for the bond angles. Our equilibrium 75* and
29 results allow unphysical or misleading values to be
identified among the vibrationally averaged parameters. The
most important defects are r,(Co—Cp) = 1.509(16) A and
r(Co—Crm) = 1.57(1) A compared to rS%(Cy—Cp) = 1.522(4)
A for Ala-I; ro(C—0) = 1.37(2) A compared to rS5(C—0)
= 1.33(1) A for Ala-ITA; and r(C,—N) = 1.430(9) A
compared to rS¥(Co—N) = 1.460(4) A for Ala-IIA. Exces-
sive deviations from the rSF and r2© values and underesti-
mated experimental uncertainties are exhibited in several
cases, such as r((Cy—C,) of Ala-IIA, while anomalous
vibrationally averaged distances smaller than the correspond-
ing equilibrium bond length occur in other instances such
as r,(C—0) of Ala-1.

Several systematic studies®* ®” have established the
expected accuracy of CCSD(T)/cc-pVTZ geometric param-
eters, allowing a reliable assessment of our B0 and SF
structures of alanine. For 19 small (H, C, N, O, F) molecules,
all-electron CCSD(T)/cc-pVTZ equilibrium bond distances
have a mean error (std. dev.) of +0.0002 (0.0023) A, whereas
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Table 5. Selected Ala-l Structural Parameters (A and deg) from Different Methodologies

r/fa ry o rs I re®
ref 112 ref 12 ref 5 ref 5 Fit 3 CCSD(T)/cc-VTZ
(C—Cq) 1.544(10) 1.527(11) 1.51(1) 1.48(1) 1.520(3) 1.5236
(Co—Cnm) 1.509(16) 1.536(11) 1.53(2) 1.57(1) 1.522(4) 1.5316
n(Cu—N) 1.471(7) 1.453(2) 1.45(1) 1.438(9) 1.448(4) 1.4570
nC=0) 1.192(2) 1.197(1) 1.24(2) 1.207(7) 1.2085
[C—0) 1.347(3) 1.341(2) 1.33(2) 1.349(6) 1.3551
£(C—Cy—Cnm) 111.6(11) 111.9(2) 108.3(6) 109(1) 109.0(3) 108.70
Z(C—Cy—N) 110.1(8) 112.9(3) 115(1) 117(1) 113.3(4) 113.24
Z(Cy—C=0) 125.6(7) 125.7(3) 125(2) 125.1(4) 125.36
£(Coe—C—0) 110.3(7) 110.3(2) 113(2) 111.82
7(0=C—Cy—N) —17.2(18) —16.6(4) —16.2(8) —17.27

2 rq for distances, r, for angles.

Table 6. Selected Ala-llA Structural Parameters (A and
deg) from Different Methodologies

fo re 5 20

e e
ref 5 ref 5 Fit 17 CCSD(T)/cc-VTZ
nC—Cy) 1.524(7) 1.517(7) 1.530(3) 1.5347
NCo—Cnm) 1.543(8) 1.571(9) 1.529(4) 1.5282
nCq—N) 1.458(9) 1.430(9) 1.460(4) 1.4726
nC=0) 1.20(2) 1.205(9) 1.2052
nC-0) 1.37(2) 1.33(1) 1.3431
Z(C—C,—Cr) 107.1(3) 107.6(8) 108.2(3) 108.08
Z(C—Cy—N) 111.7(7) 111.8(7) 109.8(4) 109.44
£(C,—C=0) 125(1) 122.0(8) 122.66
Z£(C,—C—-0) 113(2) 114.02
7(0O=C—-C,—N) 167(1) 192.5(5) 195.28

bond angles have a mean absolute error (MAE) of about
0.5°.%% A very favorable cancellation of basis set incomplete-
ness and electron correlation errors is responsible for such
high accuracy. Statistics are not available for dihedral angles,
but a larger MAE of perhaps 1—2° is probable. Because 1s
electron correlation contracts bond lengths in first-row
diatomics by 0.0005—0.0025 A,>>%® frozen-core CCSD(T)/
cc-pVTZ rB° distances are expected to be too large by at
least 0.001—0.003 A. Therefore, the general rBO 5 SE trend
for bond distances in Tables 3 and 4 is nicely explained.

An investigation of 18 small, rigid molecules89 showed
that the MAE in the relative magnitude of the sum of
theoretical o, constants, Z;a,2/B,, was only 0.225% at the
MP2/cc-pVDZ level of theory with respect to CCSD(T)/cc-
pVQZ benchmarks. The resulting MAE for 75= distances was
a mere 0.0005 A. Because our MP2/6-31G(d) o, constants
were computed with a basis set comparable to cc-pVDZ,
electronic structure errors in the B, — By VPT2 vibrational
corrections are not expected to have an appreciable effect
on our r5°F results for Ala. An important caveat to this
conclusion is that the test molecules of ref 89 did not have
the troublesome, large-amplitude vibrational modes present
in the alanine conformers. Nonetheless, the largest sources
of error in the 5% parameters are the modeling of vibrational
effects via VPT2 theory, the phenomenological nature of the
underlying empirical rotational constants, and the gaps in
the isotopologic data. Taking into account all sources of error
in both the theoretical and semiexperimental methods, the
agreement in Tables 3 and 4 between the rBO and SF
structures of Ala-I and Ala-IIA is quite satisfactory. The
dihedral angle 7(O=C—C,—N) in Ala-I is a notable point
of accord.

The conformational change from Ala-I to Ala-IIA yields
considerable shifts in a few bond distances and angles.

Particularly prominent is the shift of the semiexperimental
Z(C—Cy—N) angle from 113.3(4)° in Ala-I to 109.8(4)° in
Ala-IIA, consistent with the trans-angle rule”® of hypercon-
jugative and steric effects. In the r structures,” there is also
a large Ala-I—Ala-IIA difference in this angle, but the shift
is overestimated, and £(C—Cy,—N) is much too large for
both conformers. The carbonyl oxygen is involved in a
bifurcated hydrogen bond in Ala-I but is uncomplexed in
Ala-TTIA. In both the r5F and 72 structures, the hydrogen
bond formation is accompanied by an expected lengthening
of r(C=0) by 0.002—0.003 A. While the ry structures’
exhibit C=0 bond elongation, the magnitude of the effect
is 0.04(3) A, a severe overestimation.

A key measure of the intramolecular hydrogen bonding
in the Ala conformers is the associated heavy-atom distance
R(N++-0). In the Ala-I [/SE, rBO] structures, R(N++-0) =
[2.825(12), 2.841] A, while the corresponding values for Ala-
IIA are R(N---O) = [2.605(18), 2.607] A. Values for
R(N+--O) hydrogen-bond distances computed at several
levels of electronic structure theory are presented in Table
S3 of the Supporting Information. The variations among the
results demonstrate that our CCSD(T)/cc-pVTZ r2° values
for R(N++-0) should be accurate to +0.01 A or better. Ala-
IIA exhibits a larger, 0.034 A discrepancy between the 5=
and 7F° H-bond lengths because of the aforementioned
difficulty in determining the nitrogen-atom position. Like-
wise, both 7(0=C—C,—N) and r(Cy,—N) of Ala-IIA sig-
nificantly stray from the respective r5° values. The much
shorter R(N+++O) distance in Ala-ITA correctly reflects the
greater strength of the OH-:+*N hydrogen bond in this
conformer compared to the NH++-O bifurcated hydrogen
bonds in Ala-I. Despite these relative hydrogen bond
strengths, Ala-I is lower in energy than Ala-IIA, as
definitively shown in section III.G below. The compensating
energetic factor is the ~5 kcal mol ™' more favorable (cis)
arrangement of the carboxyl group in Ala-I.

IIL.F. Comparison of Ala and Gly Structures. A profit-
able comparison of the structures of the two simplest amino
acids is afforded by our determination of the first rSF
parameters for Ala-I and Ala-ITA combined with analogous
roF results for Gly-Ip and Gly-IIn from our earlier work.?*
The Ala-I—Glylp differences in the heavy-atom bond
distances are Ar(C—Cy) = +0.009, Ar(C,—N) = +0.007,
Ar(C=0) = 0.000, and Ar(C—0) = —0.004 A, while the
corresponding Ala-ITA—GlyIIn differences are Ar(C—C,)
= +0.006, Ar(Cq—N) = —0.002, Ar(C=0) = +0.003, and
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Table 7. Focal Point Analysis of the Ala-llA—Ala-l Energy Difference (kJ mol™")?

AEs(RHF) SIMP2] 5[CCSD] 5[CCSD(T)] AE[CCSD(T)]
aug-cc-pvDZ 10.81 —-10.73 +2.63 —-1.57 +1.14
aug-cc-pVTZ 10.50 —11.26 +2.86 —1.74 +0.35
aug-cc-pvVQZz 10.51 —-11.28 +2.97 [—1.74] +0.46
aug-cc-pV5Z 10.54 —-11.25 [+2.97] [—1.74] +0.52
CBS [10.56] [—11.21] [+2.97] [—1.74] [+0.58]
extrapolation a+ be X (X=3,4,5) a+ bX3(X=4,5) additive additive

AEy(final) = AEJCCSD(T)/CBS] + Acore[ CCSD(T)/cc-pCVTZ] + Azpve[MP2/aug-cc-pVTZ (pared)] = +0.58 — 0.13 + 1.66 = 2.11 kJ mol ™’

2 The symbol ¢ denotes the increment in the relative energy (AEs) with respect to the preceding level of theory in the hierarchy RHF —
MP2 — CCSD — CCSD(T). Square brackets signify results obtained from basis set extrapolations or additivity assumptions. Final

predictions are boldfaced.

Ar(C—0) = —0.003 A. Among these small changes, only
the Ar(C—C,) shifts are clearly significant compared to the
uncertainty of the 5% parameters. Likewise, the only
significant change among the bond angles of the Gly and
Ala heavy-atom frameworks occurs for Z(C—Cy—N), whose
Ala-I—GlyIp and Ala-ITA—GlyIIn shifts are —2.1° and
—1.6°, respectively. Therefore, the main differences between
the bond distances and angles in Gly and Ala are highly
localized at the site of the methyl substitution.

The torsion angle 7(O=C—C,—N) characterizes the devia-
tion of the amino acid backbone from planarity. In Gly-Ip
this angle is zero because the molecule has a symmetrical
bifurcated hydrogen bond and adopts Cs point-group sym-
metry. Substitution of the methyl group in Ala breaks this
symmetry significantly and leads to a torsion angle of
16.2(8)° in Ala-I. In contrast, the backbones of Gly-IIn and
Ala-ITA exhibit 7(O=C—C,—N) angles of 11(2)° and
12.5(5)°, respectively, which are essentially equivalent within
the given uncertainties.

ITII.G. Relative Energy of Ala Conformers. The focal-
point analysis of the energy of Ala-IIA relative to Ala-I
(AE.) is presented in Table 7. Showing rapid convergence
to the CBS limit, the RHF relative energy and the MP2
correlation increment are converged to better than 0.1 kJ
mol ™! using the aug-cc-pVTZ basis set. Basis sets with
diffuse functions were employed specifically to treat the
hydrogen bonding interactions.

The electron correlation sequence for AE, shows less rapid
convergence than the atomic-orbital basis set series. As seen
in earlier studies,"”"'* Hartree—Fock theory proves unreliable
for conformational energetics of amino acids, placing Ala-
ITIA above Ala-I by a substantial 10.56 kJ mol '. The MP2
correlation energy largely rectifies this overestimation, but
in the CBS limit, MP2 erroneously predicts that Ala-IIA is
0.65 kJ mol™" lower in energy than Ala-I. With more
sophisticated treatments of electron correlation, Ala-I is
restored as the lowest energy conformer. The final frozen-
core result is AE.[CCSD(T)/CBS] = +0.58 kJ mol ™!, and
appending the effect of core electron correlation (Acere), We
obtain AE., = +0.45 kJ mol~!. The incorporation of
connected quadruple excitations in coupled-cluster wave
functions is not currently feasible for alanine, but several
benchmark studies*®?' ™7 have shown that S[CCSDT(Q)]
relative-energy increments are typically about an order of
magnitude smaller than O[CCSD(T)] values. Therefore,
considering all sources of error, our final equilibrium energy

difference is AE. = +0.5(3) kJ mol™ !, in which the
uncertainty estimate represents a 95% confidence interval.

Zero-point vibrational energy (ZPVE) increases the Ala-
ITA —Ala-I energy separation by 1.66 kJ mol ', yielding AE,
= +2.1(3) kJ mol~!. Thus, ZPVE effects constitute almost
80% of the energy difference at 0 K. The low-frequency
vibrational modes that were problematic in the r5* analysis
do not appear to add significant uncertainty to the AE,
determination, as less than 1% of the ZPVE effect arises
from anharmonic corrections.

IV. Summary

This investigation is the first to conjoin theory and experi-
ment to not only determine reliable semiexperimental r,
structures (r5F) for conformers of a molecule as large and
flexible as alanine (Ala) but also to analyze in detail the
factors contributing to the accuracy of such parameters. It is
shown convincingly that an accurate r5F structure for a
flexible molecule can indeed be determined if procedures
developed for (semi)rigid systems are carefully employed.
For alanine, we find that the outcome of the rSF least-squares
refinement depends critically on the accuracy of the equi-
librium rotational constants, as expected, as well as the
attendant uncertainties, which is less expected. Therefore,
our study commenced by refitting all the spectroscopic
constants of Ala-I and Ala-IIA to the experimentally
measured rotational transitions to ensure a dependable
reference data set. A predicate observations scheme using
ab initio quartic centrifugal distortion information appears
to work well even for such a flexible molecule. In refining
rSE structures for Ala, we discovered that not all effective
rotational constants can be utilized, even if their apparent
uncertainty is small. The problem results mostly from the
effective nature of the empirical rotational constants and, to
a lesser extent, from limitations of the theoretical vibration—
rotation interaction treatment. It is essential to constrain the
r3E fit using accurate Born—Oppenheimer equilibrium (r5°)
parameters, obtained here at the frozen-core CCSD(T)/cc-
pVTZ level of electronic structure theory. A proper choice
of the fitted and constrained parameters is paramount to
obtaining good 5% results. In general, the heavy-atom
positions are well determined by the fits, whereas the
hydrogen atoms must be constrained. Avoiding overfitting
requires particular attention to statistical details.

The 75F parameters determined in this study demonstrate
that vibrational effects must be removed to get meaningful
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structures for large and flexible systems from rotational
constants. Specifically, previous vibrationally averaged r,/
Ta, Iz, o, and ry structures for Ala are shown to be defective,
exhibiting errors as large as 0.04 A for bond distances, 3°
for bond angles, and 25° for torsion angles. Therefore, small
and intrinsic conformation-induced changes are reliably
discerned only when precise r, structures are known, because
vibrational effects can mask the true variations. Our 75"
results are significant in this regard because they provide
the first sound comparison of empirically based structures
for the two simplest amino acids, Gly and Ala.

Through convergent focal-point analysis (FPA) ab initio
computations, the energy difference between the lowest
conformers of alanine has been pinpointed for the first time,
proving that Ala-I and Ala-ITA are almost isoenergetic. The
Ala-ITA equilibrium structure is higher in energy than that
of Ala-I by a mere 0.5(3) kJ mol ™', and with inclusion of
zero-point vibrational energy (ZPVE), this relative energy
is still only 2.1(3) kJ mol™'. Our high-level computations
also reveal that the unobserved Ala-IIB conformer has a
tenuous existence as a distinct species, being separated from
Ala-ITA by a vibrationally adiabatic isomerization barrier
less than 0.2 kJ mol .

Much attention has been afforded glycine and alanine as
essential origin-of-life molecules, and as such, their existence
in interstellar space has been actively researched. Until now,
only a few molecules of possible biochemical interest have
been detected with certainty in interstellar environments:
glycolaldehyde, a small “sugar”;’® acetamide, a molecule
with a peptide bond;”® and aminoacetonitrile, a precursor of
glycine.'” Glycine has been detected only tentatively.'*!-'*?
The difficulties of detecting glycine may be explained partly
by the small dipole-moment components of its most stable
conformer (Gly-Ip), for example, u, = 0.91 D.'% In contrast,
for Ala-I the u, dipole component has been measured to be
1.6 D.° The present study confirms unequivocally that Ala-I
is the most stable form of o-alanine and supports the
somewhat imprecise dipole moment measurements of
Godfrey et al.” Because b-type transitions have larger line
strengths than a-type transitions, the u, component of Ala-I
might be large enough to permit the interstellar detection of
a-alanine, provided it is sufficiently abundant in the source.
The interplay of theory and experiment could prove very
productive toward this goal.
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Abstract: Computational methods for predicting protein—ligand binding free energy continue to
be popular as a potential cost-cutting method in the drug discovery process. However, accurate
predictions are often difficult to make as estimates must be made for certain electronic and entropic
terms in conventional force field based scoring functions. Mixed quantum mechanics/molecular
mechanics (QM/MM) methods allow electronic effects for a small region of the protein to be calculated,
treating the remaining atoms as a fixed charge background for the active site. Such a semiempirical
QM/MM scoring function has been implemented in AMBER using the DivCon program and tested
on a set of 23 metalloprotein—ligand complexes, where QM/MM methods provide a particular
advantage in the modeling of the metal ion. The binding affinity of this set of proteins can be calculated
with an A2 of 0.64 and a standard deviation of 1.88 kcal/mol without fitting and an A2 of 0.71 and
a standard deviation of 1.69 kcal/mol with fitted weighting of the individual scoring terms. In this
study we explore the use of various methods to calculate terms in the binding free energy equation,
including entropy estimates and minimization standards. From these studies we found that using
the rotational bond estimate of ligand entropy results in a reasonable R? of 0.63 without fitting. We
also found that using the ESCF energy of the proteins without minimization resulted in an R? of
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0.57, when using the rotatable bond entropy estimate.

Introduction

It is important to accurately model ligand interactions so that
computational screening can be effectively applied to lower
the cost and time involved in drug discovery.' Protein—ligand
interactions involve a complicated mixture of electrostatic,
dispersion, and other interactions and therefore represent a
challenge to model and predict accurately. Methods for
predicting ligand affinity vary in the scoring function and
structure prediction methods used, and each has different
advantages and disadvantages.>™ Often, these schemes
sacrifice accuracy to gain speed or improve accuracy at
greater computational expense but then are too complicated
and slow to be used for large-scale applications.®” For these
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reasons research in this area continues to thrive, searching
for a model that achieves a good compromise between speed
and accuracy to predict binding affinities and score binding
poses.

Empirical scoring functions are composed of several terms
trained on experimental binding data to generate general
parameters.®'” These functions may perform well and are
quick, but have limitations due to the way these scoring
functions are derived and the training sets used to construct
them. The accuracy of empirical and knowledge-based
scoring functions is dependent on the size and variety of the
training set used. These functions may fail if the systems
being examined are too different from any ligands in the
training set.'' This leaves the scoring function without
knowledge of the systems being examined, and therefore, it
essentially must draw conclusions from estimates of other
ligands.

10.1021/¢ct100315g © 2010 American Chemical Society
Published on Web 09/07/2010
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Another class of scoring functions is constructed using a
potential based on classical molecular mechanics force
fields.'>'® These methods either exclude electronic effects
or account for them with an empirical parameter that may
not always apply. These methods also have problems
accurately predicting properties for nonstandard residues and
metalloenzymes, which are difficult to describe with classical
methods,'” although some successful examples have been
reported.'®!?

Quantum mechanics (QM) methods have begun to dem-
onstrate their usefulness as scoring functions for calculating
ligand binding free energies as computer power has in-
creased. Until recently, QM methods were primarily used
only for smaller systems because the cost associated with
these methods was untenable for large-scale screening.
Efforts have been made to decrease the time required for
QM calculations of proteins using various methods, making
them more viable in scoring functions.?’>* We recently
developed QMScore,>>? a scoring function using a full QM
potential that uses a linear scaling semiempirical method
within the program DivCon®*?* to calculate properties of
the protein, ligand, and complex and to combine them into
a scoring function to give a binding free energy.

QM methods have also been incorporated into molecular
mechanics programs®® and have seen a resurgence recently
as computing power has increased to create mixed quantum
mechanics/molecular mechanics (QM/MM) methods.?® These
methods have proven quite successful for molecular dynam-
ics simulations and reaction mechanism studies in biological
systems.*** QM/MM methods allow a small region of
interest to be explored in more detail while treating the
surroundings with a faster method to save computational
time. Some recent structure-based drug design methods have
used quantum mechanics,>**> QM/MM,***° or QM/QM*!
methods to calculate protein—ligand binding. These methods
take advantage of the mixed method’s ability to specify a
region of interest, usually the ligand, with an expensive
Hamiltonian while treating the remaining system with a
cheaper Hamiltonian to get more accuracy for the ligand and
its surroundings while not becoming prohibitively expensive.

It has been shown that polarization**™** and charge transfer
effects®®?” can play an important role in docking a ligand
to a target, effects that classical methods often cannot take
into account. In particular, QM methods have shown their
potential in predicting binding affinities for metalloenzymes.
Difficulties with metalloenzymes arise from the expanded
valence and the high charge of the metal atom and the charge
transfer associated with ligand binding.'® Our previously
developed method, QMScore,> %’ allows the entire protein
to be calculated using a semiempirical QM potential, with
the drawback that it is time-consuming to calculate the entire
protein at a QM level. However, the benefit is that this
method allows electronic effects such as charge transfer to
be captured throughout the protein.

QM/MM methods allow polarization effects near the
ligand to be taken into account, as QMScore does, without
the need to include the entire protein in the quantum region.
While long-range polarization may impact ligand binding
slightly, Illingworth et al. found that a majority of the
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polarization energy is within 5 A of the ligand and
polarization’s effect on the charges was fairly short-ranged
when examining MM charge polarization.*® Including the
first shell of residues allows this polarization to be fully
incorporated into the energy terms of the scoring function.
These QM/MM methods also have an advantage over many
other methods in that specific parameters are not necessary
for the ligand or many common metals that may be present.

In this paper, we develop a scoring function comprising
several terms: an interaction energy derived from QM/MM
energies calculated with AMBER 10 with DivCon, a
solvation term based on the change in surface area upon
binding, and entropic terms based on the QM/MM frequen-
cies of the system or the rotatable bonds in the ligand to
determine the overall binding free energy. We compare the
results of the new scoring function with the full QM
calculations of Raha and Merz, focusing on a set of zinc
metalloenzymes previously modeled with QMScore in a full
QM treatment.>> Our results show that the QM/MM-based
scoring function can be optimized to perform nearly as well
as the full QM calculation. In addition, we examine a number
of factors of the calculation that can be altered to explore
accuracy/speed trade-offs for this QM/MM method, such as
the number of minimizations and the entropy calculation
method.

Methods

QM/MM Implementation. The linear scaling program
DivCon,*** integrated into AMBER 10, was used to model
the QM region around the ligand. This combined (active site/
ligand) region was included in the semiempirical QM
calculation, while atoms outside of this region were treated
with the classical AMBER ff99SB*’ force field. This gives
the effective Hamiltonian of the system, which is a sum of
the MM (Hyiv), QM (Howm), and QM/MM interaction (Howy
mM) Hamiltonians:

A

Hey = Hyy + Hom + Homim M

Splitting the system into regions like this leaves many
covalent bonds between the two regions severed, resulting
in dangling bonds and charge imbalances in both regions.
This is addressed by adding a hydrogen link atom to the
QM atom in the broken bond that is formed, similar to the
implementation in Dynamo.*® The link atom is forced to lie
along the bond vector so that no extra degrees of freedom
are introduced to the system, and it is treated like a regular
QM atom throughout the calculation. The forces on the link
atom are then distributed to the QM and MM atoms that
make up the bonding pair, and any interactions involving
the MM atom are treated classically.*’

The electrostatics of the link atom must be carefully
considered to avoid false polarization of the QM boundary
atom and to maintain a constant charge for the QM region.
This is accomplished by spreading the charge of the QM
region removed from I:IMM across all of the MM atoms in
the system at the beginning of a run. This initial setup step
adds a slight cost to the QM/MM calculation, but is not
prohibitively expensive as it is a one-time calculation. To
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Figure 1. Graphical representation of the QM/MM partitioning
scheme. The area in brackets represents the QM region. (A)
The rough QM region with a PRO residue at the boundary
cuts the two peptide bonds between the C and N. (B) The
refined structure extends the QM boundary to include the PRO
residue and moves the boundary to cut the C—CA bond to
avoid spurious polarization at the boundary.

avoid overpolarization of the QM/MM boundary, the clas-
sical atom involved in the link atom bond is ignored by the
link atom, and the van der Waals interactions of the bonding
pair are treated classically. This results in more stable charge
distributions for the atoms in the QM region®’ and eliminates
any false, highly repulsive forces between the link atom and
the MM bonding atom.

The QM/MM method in AMBER allows for the minimi-
zation of a system of interest using the conjugate gradient
or steepest descent methods. In a QM/MM calculation the
forces of the QM region are calculated by the QM program
being used and are then transferred and added to the MM
forces on the QM atoms, while the MM forces are calculated
by AMBER. This allows a fairly simple minimization to be
undertaken for a QM/MM calculation while still removing
the need to calculate parameters for an organic molecule or
metal ion and taking advantage of the parameters available
in the force field for defined atom types.

Preparation of QM/MM Calculations. In a QM/MM
calculation, the boundary must be carefully chosen so that
the approximations and assumptions made in a QM/MM
system do not significantly alter the accuracy of the calcula-
tion. The QM region should not be too large to realize the
cost savings with the MM portion of the energy function. In
this study the QM region was selected to include not only
the ligand, but also the first shell of the active site to capture
electronic changes from binding. Any protein residue with
at least one atom within 5 A of the zinc ion was included in
the QM region. The QM region was expanded so that highly
polarizable peptide bonds were not cut by the boundary as
shown in Figure 1. If a proline was present, the entire residue
was included along with its peptide bond. This accom-
modates the QM cut so that it is not adjacent to the carbonyl
group of the peptide bond, providing more distance between
the polar region and the QM/MM boundary. If any disulfide
bond was included in the QM region, the region was
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Figure 2. Schematic view of the thermodynamic cycle to
calculate binding affinity. The cycle calculates the protein (P),
ligand (L), and complex (C) in vacuum and then transfers them
to solvent to find the solvation free energy.

expanded to include both partners. Once the QM region was
properly defined, the charge of the QM region was calculated
on the basis of what residues were present and the charge
of the ligand. The active site was visually inspected to
confirm the accuracy of the charge.

Preparation of Proteins. The structures used in this study
were downloaded from the Protein Data Bank (PDB).>°
Protons were added to the heavy atoms using the LEAP
module in AMBER 5.0 based on standard geometries and
physiological pH, and energy minimization was performed
to relax the added protons. Each of these complexes
contained a zinc ion in the active site, and a zinc-bound water
molecule was added to the uncomplexed proteins to fill the
exposed valence. These structures were used as the starting
point in this study.

From this point the structures were split into the QM and
MM regions for the QM/MM calculations as described above
and minimized for 500 cycles using steepest descent and a
maximum of another 1500 cycles using the conjugate
gradient method in version 10 of AMBER.”' The long-range
cutoff for both the QM and MM regions was set to 100 A
to include long-range effects in the binding affinity calcula-
tions, unless otherwise stated. After the initial structures were
minimized, the solvation free energies of the protein, ligand,
and complex were calculated in DivCon. In addition to the
solvation free energy, the vibrational frequencies of the ligand
and protein alone and in complex were calculated using
DivCon, along with a count of the rotatable bonds on the
ligand, to provide an estimate of the vibrational entropy
change associated with binding. The convergence criterion
for the vibrational entropy step was increased to 1 x 10~°
for the changes in the energy and density matrix, and the
long-range cutoff was again set to 100 A.

Binding Affinity Calculation. The binding affinity of a
protein—ligand complex can be determined using the ther-
modynamic cycle shown in Figure 2. The quantity of interest
is AGS),, the free energy change of binding in solvent, which
can be calculated via the alternative path of first desolvating
the protein and the ligand, binding of the protein and ligand
into a complex, and then solvating the complex. If the free
energy change on solvation for each entity X is expressed
as AGX,,., then the desolvation contributes —AGER®™ and
—AGEE™ 10 AGL,, while the solvation of the complex
contributes +AGSGTP'** The free energy of binding in
solution can therefore be broken down into the gas-phase
binding free energy and the solvation free energy:
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AGISJ(:xlld = AG%;:d + AAGsolv (2)
where
AAG,,, = AGGP™ — (AGIN™ + AGE)  (3)

The gas-phase free energy of binding contains an enthalpic
term from the electrostatic and nonpolar interaction energies
and an entropic term from the degrees of freedom of the
individual systems:

AGig = AHgy — TASH )
AStina = ASgasa T ASy, (5)

where ASsasa is the entropy change from the solvent-
accessible surface area (SASA) and is discussed in further
detail below.

The enthalpy term is calculated from the SCF energy in
DivCon at the AM1°2 semiempirical level, which was found
to work well previously:*'

AH%?:d — AH?OHIPICX _ Angolein _ AHlfigand (6)

where

AHf = Eelec + Ecore—core + 2 AHf (7)

atoms

Eq is the electronic energy, Ecore—core 1S the core—core
repulsion, and the final term is the sum of the heat of
formation for all the atoms. These terms are all calculated
within DivCon.

Another important consideration for protein—ligand bind-
ing is the change in entropy of the ligand upon binding in
the gas phase, ASfiu, calculated here as seen in eq 5.
Protein—ligand binding is entropically unfavorable in most
cases due to loss of translational, rotational, and conforma-
tional degrees of freedom.*®3~>3 Several scoring functions
estimate the conformational entropy component of the free
energy change via the number of rotatable bonds in the ligand
or the protein and ligand together.'”*>2° This measure
provides a good estimate of the degrees of freedom lost by
both the protein and ligand on binding.

Another way to calculate the conformational entropy
component is to calculate the vibrational frequencies of the
ligand in complex®’ with the entire QM region, as well as
the protein and ligand alone. By capturing these effects, the
change in translational, rotational, and vibrational degrees
of freedom upon binding can be estimated, and the entropic
effect on the ligand in the protein field or on the ligand and
the protein side chains in the active site that interact with
the ligand can be determined. This gives a more accurate
estimate of the entropic penalty at the cost of computing the
vibrational frequencies. In this implementation, after QM/
MM conjugate gradient optimization, the frequencies of the
optimized ligand and protein alone and in complex with the
protein were calculated at the AM1 level using DivCon and
a partial Hessian vibrational analysis (PHVA).? This allows
the frequencies of only the minimized region, either the
ligand alone in the protein field or the entire QM region, to
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be calculated, excluding the rest of the system, and has been
found to accurately reproduce the appropriate frequencies.*>°

Many of the systems being considered here are fairly large
overall, and therefore, the minimization steps will not fully
minimize all gradients to a near-zero value. This is due
partially to the minimization scheme used and partially to
our interest in keeping the binding affinity prediction quick
enough for large-scale applications. Thus, a small number
of imaginary frequencies may appear from the diagonaliza-
tion of the Hessian matrix, especially when calculating the
frequencies of the entire QM region, comprised of the ligand
and protein side chains. In these cases, any imaginary
vibrational frequencies found were not included in the
calculation of the vibrational entropy. Some low-frequency
vibrational modes may be disregarded, but this calculation
can still provide an estimate of the vibrational entropy change
due to binding.

From these frequencies the vibrational entropy, energy,
and zero-point energy can be calculated from the normal-
mode frequencies. The vibrational entropy component ac-
counts for the change in entropy due to the gain of six
vibrational degrees of freedom and loss of translational and
rotational degrees of freedom when the ligand binds to the
protein. The vibrational energy component represents the
internal thermal energy change from molecular vibrations
upon ligand binding. Here, the vibrational entropy is
calculated either by finding the vibrations of the ligand in
complex and free, which has been shown to be a good
approximation of the degrees of freedom of the protein and
ligand system,” or by calculating the frequencies of the QM/
MM components including the entire QM region’s side
chains. In this study both of these methods are explored in
the interest of measuring accuracy vs cost. The zero-point
energy (ZPE) corrects the energy of the system up from the
bottom of the harmonic oscillator well to the lowest
vibrational quantum level, accounting for vibrations occurring
even at 0 K. In this study, the vibrational energy and ZPE
are already implicitly included in the calculation due to the
parametric way in which the semiempirical methods are
developed (fit against experimental heats of formation) and
therefore are excluded from the scoring function to avoid
double counting these properties. Calculating these vibra-
tional frequencies provides the estimate to the entropy change
in the gas phase that we use in our overall scoring function.

The final part of the binding free energy we consider is
the solvation free energy change of the system. We calculate
this as the sum of enthalpy and entropy terms:

AG,,, = AH

solv

— TASgaga (8)

solv

It has been shown that an implicit model of solvation
appropriately describes the solvent interactions that occur
in protein—ligand binding to account for the solvation
effects.®>” This term can roughly be described as the free
energy associated with the desolvation of the active site and
ligand upon ligand binding.

In this study an implicit solvent Poisson—Boltzmann self-
consistent reaction field (PB/SCRF) solvation model was
used to calculate the solvation enthalpy.’® This method
essentially calculates the energy of the solute with and
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without the presence of solvent, allowing only the QM region
to polarize when the solvent is added to the calculation. This
gives an approximate solvation enthalpy for the active site,
allowing the charges in that area to fluctuate in the solvent
field, while holding the remaining charges in the system
fixed. A previous study by Merz et al. found an unsigned
average error of 19.2 kcal/mol for four small proteins using
the same QM region cutoff size. Using a Poisson—Boltzmann
method also means that an internal and external dielectric
must be set to properly capture the polarization of the QM
region.”” In this study CM1° charges, an external dielectric
constant of 80, and an internal dielectric constant of 1.0 were
used. The dielectric constant is used to estimate the polar-
izability of the region it is assigned to. In fixed charge
methods, values of 3.0 and 4.0 are commonly used for an
estimate of polarizability. However, here a value of 1.0 was
used because the QM region is permitted to polarize in the
solvent field due to the presence of electronic degrees of
freedom. Using this QM/MM PB method allowed the
solvation enthalpy of the protein, ligand, and complex to be
determined, yielding the overall enthalpic cost of desolvating
the ligand and protein active site.

There is also an entropic solvation term to be considered
on binding due to the displacement of water molecules from
the active site, which plays an important role in binding.*¢!
Changes in solvent-exposed surface area upon ligand binding
have a correlation to solvent entropy,® and some scoring
functions successfully use the term as a measure of solvent
entropy.''72%3 In this study the solvent-accessible surface
area of the heavy atoms, regardless of the polarity of the
atoms, was used to estimate the solvation entropy of the
binding process. This was done by running a 1.4 A probe
over the surface of the protein, ligand, and complex, which
yielded the SASA®* of each respective piece of the
protein—ligand binding calculation. This surface area dif-
ference gives an estimate of the solvent entropy gained upon
complexation based on the parameters from Legrand and
Merz.®* Combining the enthalpy term from the PB equations
and the entropy term of the SASA approximation, the free
energy change on solvation can be calculated using eq 8.
The enthalpy term is simply the difference in enthalpy
between the solvated and unsolvated protein, ligand, or
complex, the solvation energy, and the entropy term is
approximated using the SASA term.

After calculation of all of these individual components, a
scoring function can be constructed to calculate the binding
affinity:

AGy,, = AG™ + AEp, 9)

gas
In this equation, AGE;‘;d is the energy change from the ESCF
of the unbound protein and ligand going to the complex
containing the AS,i, and ASsasa entropies and AEpg is the
Poisson—Boltzmann energy change. Combining all of these
individual terms provided an overall equation that allowed
the binding free energy to be calculated from individual
energy components.

Regression Analysis. The method described here was
assessed by comparing its predictions against experimental
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data using both the square of the sample correlation coef-
ficient, R?, and the standard deviation, SD:

2= fy
Y- w

_ 1 e
SD—JNZM iy (1)

where f; are the predicted free energies of binding, Y; are
the experimental free energies of binding, and Y is their
average.

We also attempted to improve the method by using
multiple linear regression (MLR) of the terms in the energy
function to predict the binding free energies. MLR defines a
relationship between a dependent variable and independent
variables using a least-squares method. MLR produces a
linear equation where X;, X, ... are independent variables,
here components of the scoring function, and Y is the
dependent variable, the binding affinity:

R =1 (10)

Y.=p8,+ B X, T 6.X,+ .. T¢ (12)

for data points i = 1, 2, ..., N. By using these methods, not
only can the predictive ability of a scoring function be
estimated, but weights for individual terms (3o, 31, ...) in
the scoring function can be determined to give them more
influence in the overall score and improve the scoring
function.”?> R* and the standard deviation can then be
calculated from the values predicted by the linear regression

f;‘ = 180 + ﬁIAESCF - IBZTASVib + ﬁ3AEPB + ﬁ4ASSASA
(13)

in comparison with the experimental data, using eqs 10 and
11.

Results and Discussion

The proteins, ligands, and complexes used in this study were
taken from a full QM study undertaken by Raha and Merz,*
consisting of 18 carbonic anhydrase (CA) and 5 carbox-
ypeptidase (CPA) complexes with known experimental
binding free energies and resolutions better than 2.5 A. Table
1 summarizes the proteins and their ligands, resolution, and
experimental binding affinities as well as the number of QM
atoms for each. One of DivCon’s features is its linear-scaling
capabilities, which allows larger than usual systems to be
used in semiempirical calculations.**** The DivCon method
splits a protein into separate groups of atoms, in this case
amino acids. These groups include a buffer region around
them to account for polarization effects on the central group.
The SCFs of these individual groups and their buffers are
then calculated separately. This is faster than performing an
SCF on the entire protein at once, since it is quicker to do
many small diagonalizations than one very large one for each
SCF cycle. This allows the method to be useful for large
systems. Here, the crossover point for standard versus divide
and conquer calculations was determined to be approximately
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Table 1. PDB ID, Resolution (A), Inhibitor, Type, and Experimental AG of the 18 Carbonic Anhydrase (CA) Complexes and

5 Carboxypeptidase (CPA) Complexes Used in This Study?

PDB ID resolution inhibitor type AG(exp) protein ligand complex
1a42 2.25 brinzolamide CA —13.66 210 44 250
1am6 2.1 methyl hydroxamate CA —5.98 190 10 196
1bcd 1.9 methyl sulfonamide CA —5.39 210 10 216
1bn1 2.1 AL5917 CA —12.90 210 35 241
1bn3 2.2 AL6528 CA —13.66 210 35 241
1bn4 2.1 AL5927 CA —12.86 210 36 242
1bnn 2.3 AL7183 CA —13.82 210 37 243
1bnq 24 AL4623 CA —-13.11 210 41 247
1bnt 2.15 AL5424 CA —13.54 210 38 244
1bnu 2.15 AL5300 CA -13.40 210 34 240
1bnv 2.4 AL7099 CA —12.12 210 42 248
1bnw 2.25 AL5415 CA —12.54 210 29 235
1cil 1.6 ETS CA -12.90 160 25 182
1cim 2.1 PTS CA —12.19 210 35 241
1cin 2.1 MTS CA —12.06 210 29 235
1cnw 2.0 EG1 CA —10.67 210 33 239
1cnx 1.9 EG2 CA -10.12 264 51 311
1cny 2.3 EG3 CA —10.85 210 44 250
1cbx 1.54 L-benzylsuccinate CPA —8.77 210 64 270
3cpa 1.54 GY CPA —5.37 123 31 150
6cpa 1.54 ZAAP(O)F CPA —15.93 160 57 214
7cpa 2.0 BZ-FVP(O)F CPA -19.30 141 73 211
8cpa 1.54 BZ-AGP(O)f CPA —12.66 123 54 174

4 The experimental binding free energy for each complex was calculated from the Ki as —RT In(Kj), giving the binding free energy in
kilocalories per mole. The last three columns show the number of QM atoms in each system for each metalloenzyme.

600 atoms in the QM region. We therefore determined QM
regions with this limitation in mind.

In the following, several different possible variables and
scoring function components will be explored and compared
to experimental binding free energies for these metalloen-
zymes to assess this function’s viability. This procedure will
produce the best components for use in the scoring function
while also providing details on important considerations for
the scoring function. We will also examine the use of MLR
weights to determine the influence this statistical method will
have on the predictions. Finally, an analysis of different
methods to include the vibrational entropy will be undertaken
to explore ways to enhance the computational performance.

ESCF Is More Predictive Than Total Energy. In the
case of a QM/MM calculation an important consideration is
whether to use the total energy of the system or only the
QM region’s energy. The QM region’s energy, ESCF,
encompasses only the energy of the QM region, including
all the changes in the electronic terms associated with
binding, while the total energy encompasses the ESCF energy
as well as the MM energy terms, such as bond and angle
terms. Either of these terms may be appropriate to describe
protein—ligand binding, and their effect on binding affinity
prediction must be examined to determine the best one to
use.

In this case, we found that the ESCF energy is a marked
improvement over the total energy. As calculated with eqs
10 and 11, the square of the correlation coefficient, R?, for
the total energy is 0.56 with a standard deviation of 2.09
kcal/mol, while R* for the ESCF energy is 0.64 with a
standard deviation of 1.89 kcal/mol. These binding affinities
were calculated after two minimization runs with a nonbond
cutoff of 100 A. It can be argued that only the ESCF energy
is essential in a QM/MM scoring function because the most
detail is focused on the area of greatest interest. Since the

active site and ligand, when present, are defined as the QM
region, it is clear that the greatest energy changes are located
within the QM region and that to a first approximation the
MM region is largely unaffected. Indeed, including the total
energy of the protein may have no effect, or even lower the
predictive ability of a scoring function as random movements
unassociated with binding may occur in the MM region,
introducing spurious energy terms to the total energy. These
terms may especially be found at the periphery of the protein,
which will have the least effect on protein—ligand binding
assuming nonallosteric interactions. These distant changes
may reduce the predictive ability through long-range interac-
tions that do not reflect binding per se, but are an artifact of
our computational procedure. For this reason we consider it
prudent to disregard the total energy of the protein in favor
of using just the ESCF energy of the smaller QM region.

A Long-Range Cutoff of 100 A Behaves Better Than
a Cutoff of 10 A. Another important consideration is the
effect of the long-range nonbond cutoff. Atoms throughout
the protein may affect the electronic properties of the QM
active site and ligand, which may in turn enhance or diminish
protein—ligand binding. It is important to account for this
when calculating the binding free energy of protein—ligand
complexes. The binding affinity of the protein set was
calculated using the scoring function with two steps of
minimization, the ESCF energy and a cutoff of 10 and 100
A, to explore this parameter’s effects on the calculated
binding affinity.

The long-range cutoff has a large impact on the predictive
ability of the scoring function. Using a cutoff, for both the
QM and MM regions, of 10 A gives an R? of 0.36 with a
standard deviation of 2.51 kcal/mol. However, using the
larger cutoff of 100 A yields an R? of 0.64 with a standard
deviation of 1.88 kcal/mol. For these relatively small systems
this cutoff includes the entire protein in the nonbond cutoff



Prediction of Protein—Ligand Binding Affinity

calculation. The importance of long-range cutoffs is well-
known and, not surprisingly, appears to be no less important
in these binding affinity calculations than in molecular
dynamics simulations.*’

A Single Minimization Cycle and the ESCF Scoring
Function Perform Well. In these calculations, the QM/MM
energy of the protein, the ligand, and the protein—ligand
complex are minimized using the steepest decent and
conjugate gradient minimizers within AMBER. The starting
geometries had the hydrogens minimized while the heavy
atoms were held fixed, but the rest of the protein structure
is that of the crystal structure found in the PDB. Minimizing
the protein allows the QM and MM regions to relax in their
molecular environment, lowering the overall energy of the
protein and providing a good starting point for further
calculations. These QM/MM minimizations also relax the
ligand in both the free and bound states, giving insight into
possible structural changes of the ligand. Minimization also
makes it possible to properly calculate the vibrational
frequencies.

The predictive ability of the scoring function on unmini-
mized structures was also examined. In these studies the
heavy atoms were obtained directly from the PDB, while
the protons were added with LEAP and allowed to minimize.
From these structures the vacuum interaction energy, sol-
vation free enthalpy, and solvation entropy were calculated.
For these calculations the vibrational entropy component was
estimated using the number of rotational bonds in the ligand,
assigning a 1 kcal/mol penalty to each bond as used by Raha
et al.*>%° The number of rotatable bonds is used here because
using the vibrational frequencies without minimization results
in large numbers of imaginary frequencies and will not
provide an accurate representation of the actual entropy
change.

Using the best parameters found above, namely, the ESCF
energy and a long-range cutoff of 100 A, the predictive
ability of the scoring function was tested as a function of
how many minimizations were done, each minimization
comprising a 500-step steepest descent followed by a
maximum 1500-step conjugate gradient minimization. The
number of minimization steps used has an interesting effect
on the predictive ability of the scoring function. If the total
energy of the protein is used, one minimization results in an
R* of 0.48 with a standard deviation of 2.27 kcal/mol.
Performing two minimizations and using the total energy of
the system increases the squared correlation coefficient to
0.56 with a standard deviation of 2.09 kcal/mol. Using the
ESCF energy, the correlation increases to 0.59 for one
minimization and to 0.64 for two minimizations, while the
standard deviations are 2.01 and 1.88 kcal/mol, respectively.
The results of these predictions using structures without
minimization and the vibrational entropy estimated by the
number of rotatable bonds gives a correlation of 0.57 with
a standard deviation of 2.07 kcal/mol. Figure 3 summarizes
the results of each of these minimization runs, demonstrating
the differences between ESCF and total energy for each
minimization scheme.

It is interesting to note that, for one minimization step,
the ESCF correlation coefficient exceeds the total energy
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Figure 3. Effect of various minimization protocols on binding
affinity prediction.

coefficient, but the two binding affinity correlations are quite
close for two minimization steps. This suggests that using
the ESCF energy is an adequate measure of the heat of
interaction and that a single minimization may be sufficient
to predict binding affinities to save time. Using one mini-
mization cycle would obviously save time over performing
two cycles, so the ability to accurately calculate binding
affinity at one minimization cycle is an important consid-
eration. Figure 3 demonstrates that using the total energy of
the system at one cycle is not as predictive as the ESCF
energy while there is minimal difference between one and
two cycles for the ESCF energy. It is also interesting to note
that scoring using ESCF without minimization also produces
a result relatively close to the minimized correlation. This
observation is important because if a large screening effort
were undertaken, this could be used to further reduce the
cost while only slightly lowering the predictive quality over
partial or full minimization.

Binding Affinity Predictions Can Be Improved by
MLR. The binding affinities of the 23 ligands were
recalculated using multiple linear regression (eqs 12 and 13),
calculating weights for the four energy terms and the constant
seen in eq 13. For these calculations, the components of the
scoring function were calculated using the best parameters
for each term as described above. The ESCF energy was
used for the heat of interaction, a long-range cutoff of 100
A was used, and, for thoroughness, two minimization cycles
were performed even though one was shown to be adequate
for the ESCF energy. For these binding affinity predictions,
CMI1 charges were used in the SCRF solvation calculation.
Figure 4 demonstrates the results of both the simple sum
and the fitted function.

These results show promise for using the QM/MM method
in binding affinity prediction. Calculating the binding af-
finities of these zinc metalloproteins with MLR yields an
R* of 0.71 with a standard deviation of 1.69 kcal/mol,
compared to the results without any fitting (R* of 0.64, SD
= 1.88).

Using the Number of Rotatable Bonds To Estimate
the Conformational Entropy Change. As mentioned above,
it is fairly common to use the number of rotatable bonds to
estimate the vibrational entropy penalty. The use of this
estimate was also examined in this study by counting the
number of rotatable bonds on the ligand using the Autotors
tool from AutoDock.®® After the number of rotatable bonds
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Figure 4. Calculated vs experimental AG of binding for the 23 zinc protein—ligand complexes. Squares represent the binding
affinity calculated without any fitting to experimental data (R* = 0.64). Tilted squares represent the calculated binding affinity
after fitting components of the scoring function using MLR (R? = 0.71). All units are kilocalories per mole.

in the ligand was counted, it was assumed that each of these
bonds would be held fixed upon binding and each bond was
responsible for 1 kcal/mol, representing the conformational
degrees of freedom lost on complexation. Using energies and
the surface area from the minimized structures, these
calculations resulted in a correlation coefficient of 0.63 and
a standard deviation of 1.92 kcal/mol without fitting. Without
the minimization, these values are 0.57 and 2.07 kcal/mol
(Figure 3). The correlation increases to 0.70 and the standard
deviation decreases to 1.72 kcal/mol with MLR fitting. Again,
the results without fitting are close to the results obtained
by calculating the frequencies of the entire QM region, while
the results with fitting are slightly worse than those calculated
using only the ligand frequency analysis. This is an interest-
ing result, confirming that using the number of rotatable
bonds in the ligand as an estimate of the conformational
entropy change may be sufficient to capture its effect on the
predictive ability of this scoring function. The rotatable bond
method may be used instead of a frequency calculation to
save time if, for example, the ligand or data set is particularly
large. It is also interesting to note that, at least for this set of
23 ligands, the number of rotatable bonds correlates with
the vibrational entropy of the ligand calculated by DivCon
with a correlation coefficient of 0.81, as seen in Figure 5.
This presents more evidence that using the number of
rotatable bonds is an acceptable estimate for the vibrational
entropy of the ligand, and this can be capitalized upon to
reduce the time from several hours for a full QM region
vibrational calculation to a few seconds for the number of
rotatable bonds if desired. Moreover, via more advanced
analyses of free and bound ligands, it may be possible to
create a rotatable bond model that tracks high-level computed
results with an even greater accuracy.
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Figure 5. Correlation of TAS,i, with the number of rotatable
bonds for each ligand in the set from ligand-only frequency
calculations (R? = 0.81).

Using the Vibrational Frequencies of the Ligand
Alone To Estimate the Conformational Entropy
Change. As a way to accelerate scoring calculations, some
binding affinity calculations ignore or simply estimate the
vibrational entropy component. It has been found that a good
estimate can be achieved using the number of rotatable bonds
in the ligand**® or the change in the number of freely rotatable
bonds in the ligand and protein based on solvent exposure.?>26¢
These two methods used to estimate vibrational entropy are
extremely quick, as the number of rotatable bonds is easily
calculated, but are not always as accurate as desired and do
not necessarily reflect the properties of the ligand. In this
situation a compromise must again be made between
accuracy and computation time to decide whether this
estimate is accurate enough.

To account for the entropic term in this scoring function,
the vibrational frequencies of some or all of the QM atoms
can be calculated. This provides a more physical representa-
tion of what is happening when the ligand binds than a simple
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count of the rotatable bonds. It also provides the additional
advantage of calculating the frequencies in the field of the
entire protein, allowing short- and long-range interactions
to influence the results. As mentioned above, due to
limitations in the minimization scheme used here, imaginary
frequencies were often found from the normal-mode analysis.
With the minimizers used in AMBER we were unable to
eliminate all imaginary frequencies. Advanced minimizers
or very long minimization runs might be able to mitigate
this issue and may be investigated in future efforts. These
imaginary frequencies were more prevalent for larger QM
regions, but still comprised only a very small portion of the
overall frequencies calculated, and all were subsequently left
out of the total vibrational entropy calculations. Excluding
these frequencies may leave out some vibrational contribu-
tions, but overall the vibrational entropy calculated here can
still provide a reasonable estimate of the entropy change
associated with binding.

In the previous sections we used the vibrational entropy
calculated from the entire QM region, except when no
minimization was done. These frequencies capture effects
in both the ligand and the protein’s active site where all of
the major vibrational changes will occur from binding. While
in principle the most accurate, this method is also the most
expensive because the active site and ligand must be fully
minimized and the Hessian computation is time-consuming.
This method may work for small proteins or small QM
regions, but may prove to be much more difficult and time-
consuming for larger proteins or QM regions; these frequency
calculations are, however, fairly trivial to parallelize. It is
for these reasons that in this section we will examine various
ways of calculating this vibrational entropy component and
the impact they have on the scoring function’s predictive
ability.

An alternative afforded by the QM/MM method is to
calculate the vibrational frequencies of just the ligand in the
protein field, as successfully applied by Grater et al.>’ In
this calculation the entire protein is frozen and the vibrational
frequencies of the ligand, in the electronic field of the protein,
are calculated. These frequencies are then compared to those
for the ligand alone to find the change in vibrational entropy.
Since the ligand will be a more manageable size than the
entire QM region, this makes the minimization requirement
easier to meet, as well as reducing the number of atoms in
the normal-mode calculation. These predictions were made
with the same criteria as above, using the two-step minimi-
zation and the ESCF energy of the QM region while varying
the manner in which the frequencies were calculated. In the
case of these 23 zinc metalloenzyme complexes, using the
frequency of just the ligand results in an R? of 0.63 with a
standard deviation of 1.89 kcal/mol without fitting. This can
be compared to the results of the PHVA of the entire QM
region, which yielded results of R* = 0.64 with a standard
deviation of 1.88 kcal/mol. With MLR fitting, the correlation
coefficient of the ligand-only vibrations increases to 0.72 with
a standard deviation of 1.66 kcal/mol, while the frequencies
of the full QM region yield a correlation of 0.71 and a
standard deviation of 1.69 kcal/mol.
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Table 2. Time (min) Required To Calculate the QM
Region and the Ligand-Only Vibrational Frequencies with
the QM/MM Method for the Protein—Ligand Complex

PDB ID QM region ligand-only
1a42 868.54 8.94
1am6 416.45 0.37
1bcd 580.17 0.44
1bn1 804.06 29.05
1bn3 802.76 6.50
1bn4 794.45 6.74
1bnn 818.37 8.38
1bng 825.55 8.09
1bnt 846.12 7.30
1bnu 785.09 10.03
1bnv 857.38 10.12
1bnw 735.04 5.76
1cbx 378.02 3.43
1cil 797.64 5.57
1cim 721.65 6.68
1cin 759.12 5.96
1cnw 1614.17 18.85
1cnx 866.89 13.80
1cny 1074.23 34.21
3cpa 199.51 4.97
6cpa 576.84 18.70
7cpa 555.22 33.83
8cpa 302.63 16.84
average 738.26 11.50

The unfitted and fitted results demonstrate that the extra
information obtained from a full QM PHVA does not
favorably impact our ability to predict protein—ligand
binding. This result is somewhat unexpected because the full
QM PHVA quantifies entropy changes in the protein side
chains, but according to these results, these entropy changes
do not have a large impact on the predictive ability of the
scoring function for this set. Again, this impact may increase
as the size of the QM region increases and more side chains
are accounted for. However, these results must be viewed
in terms of a cost—benefit analysis because calculating the
vibrational frequencies can be quite expensive, so it is
encouraging that the ligand-only results provide good predic-
tions. Table 2 shows the time needed to calculate only the
vibrational frequencies of the protein—ligand complex using
the entire QM region and the ligand-only approach.

The range of vibrational entropies calculated here closely
matches that from Schwarzl et al.>® with a minimum of
—9.85 kcal/mol and a maximum of 1.44 kcal/mol. The
ligands in this study contain more rotatable bonds than those
used in the study by Schwarzl, accounting for the larger range
of entropies found here. Including the protein’s vibrational
entropy change moves the range of values to a minimum of
—13.91 kcal/mol to a maximum of 4.91 kcal/mol. The
appearance of this penalty in these vibrational calculations
indicates a penalty to binding incurred due to loss of
vibrational degrees of freedom in protein side chains. This
is similar to the degrees of freedom lost in the ligand, but
cannot be fully recovered with the ligand’s new vibrational
degrees of freedom, often leading to an overall binding
penalty depending on the size of the ligand and composition
of the side chains. It is also worth noting that the calculation
time listed is that necessary for just one component of the
vibrational entropy computation. When the protein’s QM
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Table 3. Average Relative Timings for the Three Main
Methods Used in the Study®

method relative time R?
two minimization runs + QM vibrations 8.83 0.64
two minimization runs + ligand vibrations 4.85 0.63
no minimizations + rotatable bonds 1.00 0.57

2 Times are relative to the no minimizations and rotatable bond
entropy estimate.

region is included in the vibrational analysis, an additional
calculation must be undertaken to calculate the frequencies
of the protein without the ligand and the ligand alone, which
are additional steps that are time-consuming. These proteins
are also relatively small, so the time would only increase
even more with larger QM regions. This is an important
consideration in the use of this scoring function, which could
easily be modified to include the entire QM region frequen-
cies or those of the ligand alone depending on the compu-
tational resources available and the amount of detail required.
Overall, this analysis indicates that using the vibrations of
the ligand alone may be enough to produce a good correla-
tion, but more accuracy can potentially be gained using the
frequencies of the entire QM region.

Relative Timings. To investigate the timing differences
between the methods studied above, relative timings were
compiled on the basis of average times for the various
components. These will illustrate the timing differences
between the methods in a manner that does not depend on
the current level of technology, but gives an idea of the utility
of these methods compared to each other. The relative
timings for the QM/MM methods can be seen in Table 3
along with the correlation found using each method.

From Table 3 we can see that the full QM vibration
calculation method is very expensive compared to the other
two methods. Even the ligand-only vibration is expensive
due to the slow minimization steps. This gap could perhaps
be shortened by a quicker minimizer or perhaps using only
one minimization run instead of two, which would be more
acceptable for the ligand-only vibration calculations than the
full QM vibrations due to negative frequencies. As the QM
portion grows even larger, it could be expected that this
scaling would become even worse for the minimization runs,
necessitating a more efficient minimizer or skipping the
minimization runs altogether and using the rotatable bond
entropy estimate. The difference in the correlations is not
great between all of these methods, but the timing is, so an
appropriate method should be chosen depending on the
number and size of the systems to be studied.

Comparison of QM/MM with QM. It is useful to
compare the predictive abilities of this QM/MM study with
those of the full QM study performed by Raha and Merz.*
Both of these were done using the AM1 semiempirical
Hamiltonian on the same set of metalloenzymes. This
comparison will allow us to assess the QM/MM method’s
predictive ability in comparison to the full QM method and
further determine the viability of the QM/MM approach for
scoring. Raha and Merz reported the results without fitting
and by fitting the solvation entropy term in the scoring
function and calculated a correlation of 0.69 without fitting,
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Table 4. Comparison of Squared Correlation Coefficients
(RP) and Standard Deviations (SDs) between Full QM
Results from Raha®® and the QM/MM Method Described
Here

method R? SD (kcal/mol)
full QM, no fitting 0.69 1.50
full QM, MLR fitting 0.80 1.18
QM/MM, no fitting 0.64 1.88
QM/MM, MLR fitting 0.71 1.69

while they report a higher correlation of 0.80 when using
MLR on only the surface area terms of the organic heavy
atoms in the protein. The QM/MM method here obtains a
correlation of 0.71 using MLR fitting for all the terms, which
is fairly close to the full QM prediction, while the predictions
without fitting yield a correlation of 0.64. Not surprisingly,
the QM/MM method does not do quite as well as the full
QM method, but it is encouraging that it is qualitatively
competitive. The correlations and standard deviations of these
two studies are compiled in Table 4.

Charge Analysis. An advantage of a full quantum or QM/
MM method for these binding affinity calculations is that a
QM method will be able to capture polarization and charge
transfer (CT) effects. Polarization is generally considered an
intramolecular term, representing the internal rearrangement
of electrons, whereas charge transfer is an intermolecular
term, which is an external source’s electronic effects on the
protein. CT has been shown to play an important role in
binding,**** and it is interesting to determine the degree of
CT that occurs upon binding. When using a classical method,
this term would generally be missed or estimated with a
parametrized term, but a QM method allows the CT and
polarization to have a more physical effect on the binding
of the ligand. These CT effects can be especially relevant in
a metalloenzyme complex due to the nature of metal ions
and their bonds. Table 5 presents the charge transfer that
occurs to the ligand in solution, when binding to the protein.

The table shows the charge transfer to the ligand involved
in the binding process. CT was shown to contribute
significantly to the interaction energy when solvating a
protein, and it can safely be assumed that this is also an
important factor in protein—ligand binding. Most of the
carbonic anhydrase inhibitors gain approximately 0.9 electron
upon binding when considering the CM1 charges, with the
exception being 1am6, which only gains 0.71 electron. For
the carboxypeptidase proteins the ligands give up some of
their charge to the protein in all cases but 3cpa. This is due
to the nature of the ligands: the ligand for 3cpa has a neutral
charge, while the rest of the compounds have a negative
charge. A standard molecular mechanics model would not
be able to properly represent these, while a higher level QM
method would better capture the effects, but might become
too costly. This semiempirical QM/MM method provides a
compromise for capturing CT effects, allowing them to be
included while keeping the overall cost reasonable.

Conclusions

We have presented a QM/MM method to calculate the
binding free energy of protein—ligand complexes. This
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Table 5. Charge Transfer from the Protein to the Ligand
(electrons) for Mulliken and CM1 Charges in Solution

protein type PDB ID Mulliken CM1
CA 1a42 -0.57 -0.87
CA 1am6 —0.60 -0.72
CA 1bcd —0.64 -0.91
CA 1bn1 —0.68 —-0.84
CA 1bn3 —0.58 -0.88
CA 1bn4 —0.58 —0.88
CA 1bnn —0.58 -0.88
CA 1bng -0.57 -0.87
CA 1bnt —0.58 —0.88
CA 1bnu —0.58 -0.88
CA 1bnv -0.57 -0.87
CA 1bnw —0.58 -0.87
CA 1cil -0.57 -0.87
CA 1cim -0.57 -0.87
CA 1cin —0.61 —-0.90
CA 1cnw —0.58 -0.88
CA 1cnx —0.58 -0.88
CA 1cny —0.58 —-0.88
CPA 1cbx 0.37 0.35
CPA 3cpa —0.56 —0.61
CPA 6cpa 0.43 0.41
CPA 7cpa 0.49 0.46
CPA 8cpa 0.27 0.26

method takes advantage of the linear scaling capabilities of
DivCon to include a large number of atoms near the ligand
in the semiempirical QM region. This allows electronic
effects, which would be missed in a classical calculation, to
be properly represented while keeping the computational cost
low enough to be performed on alarge library of protein—ligand
complexes. This approach was successful at predicting the
binding free energies of a set of 23 zinc metalloenzyme
complexes. The scoring function performs well without any
fitting, but through multiple linear regression, the function
can be fit to experimental data and the predictive performance
increases from a squared correlation coefficient of 0.64 to
one of 0.71. This may only be the case within a single protein
family, and an overall set of weights for general use may be
necessary as in empirical scoring functions, but it shows that
the method has potential.

This method may also take into account the vibrational
entropy change of the ligand upon binding. The QM/MM
method allows a unique perspective on this in that a normal-
mode analysis can be conducted in the field of the protein’s
charges while charges further from the ligand remain fixed.
This gives a more accurate representation of the vibrational
modes available to the ligand, and therefore a more accurate
representation of the vibrational entropy contribution to the
overall binding affinity of the complex, but is computation-
ally intensive. A simple estimate of counting rotatable bonds
was also examined to estimate entropy change as a way to
save computation time.

The contributions of various parameters for the predicted
binding affinity were also investigated including long-range
cutoffs and the use of the total energy of the system versus
the QM energy for the heat of interaction. These studies
indicated that the long-range cutoff used makes a significant
difference in the predicted binding affinity. It was also found
that the use of the ESCF energy to calculate the heat of
interaction was preferable to the use of the total energy of
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the system. Using the ESCF energy, the number of mini-
mization steps does not make as much of an impact, whereas
increased minimization cycles greatly improve the predictive
ability of the function when the total energy is used.

Although the scoring function presented is relatively good
at predicting the binding affinities of zinc metalloenzyme
complexes, there is room for improvement. Depending on
the acceptable costs, a larger QM region can easily be chosen.
This will provide a second shell of residues to interact with
the ligand in the QM region, giving a better idea of the
electronic effects involved in binding. Not only will this
present a better representation of the charge transfer to and
from the ligand, it will allow a better picture of the
polarization due to the protein environment. Sampling of the
system through MD snapshots similar to the MM-PBSA
method could also be used to potentially improve the
predictions of this scoring function. These snapshots will
provide a sampling of the protein, potentially increasing the
predictive ability while increasing the cost of the calculations.
Using a purely classical simulation, this might present
problems because each ligand would need to be parametrized
properly, which is quite costly. However, a QM/MM method
would allow the parametrization step to be skipped, and a
QM region could be formulated to make a sampling of the
different configurations tractable. All of the tools for the QM/
MM scoring method are easily applied to the snapshots
generated by a simulation to emulate the MM-PBSA method.
A QM/MM simulation could also be constructed to include
only the ligand in the QM region, allowing the protein to be
sampled while removing the parametrization needs of the
ligand.

Overall, the QM/MM scoring method presents good
predictive trends at a reasonable cost, but does present some
areas for future improvement. In its current form this method
might be more useful verifying ligand poses or as a drug
refinement step, but could be made more affordable through
parallelization techniques and modification of the parameters
used.
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Abstract: The antisymmetric magnetic interaction is studied using correlated wave-function-
based calculations in oxo-bridged copper bimetallic complexes. All of the anisotropic multispin
Hamiltonian parameters are extracted using spin—orbit state interaction and effective Hamiltonian
theory. It is shown that the methodology is accurate enough to calculate the antisymmetric terms,
while the small symmetric anisotropic interactions require more sophisticated calculations. The
origin of the antisymmetric anisotropy is analyzed, and the effect of geometrical deformations

is addressed.

1. Introduction

The combined effect of spin—orbit coupling (SOC) and
spin—spin coupling (SSC) can lead to magnetic anisotropy
without the necessity of applying an external magnetic field.
In addition to the presence of unpaired electrons, the system
should be not too symmetric to present measurable magnetic
anisotropy effects and to avoid the presence of unquenched
orbital momentum.' This effect has been encountered in
organic molecules,’ monometallic transition metal complexes,4’5
single-molecule magnets (SMM:s),® and extended materials
related to the cuprate high-T. superconductors.”® Antisym-
metric interactions were introduced phenomenologically in
1958 by Dzyaloshinskii® to describe the magnetic properties
of a-Fe,0;. The theory was generalized by Moriya two years
later,'° leading to the well-known standard multispin Hamil-
tonian for binuclear systems with § = 1/2 magnetic centers:>*
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a=1JS,-S, + 8,08, + dS, xS, (1)
This model involves an isotropic exchange term J, a
symmetric zero field splitting (ZFS) tensor D, and the
antisymmetric part that is described by the Dzyaloshinskii—
Moriya (DM) pseudovector d. Interpretation of experimental
data led to detailed information about spin canting in copper
oxides and explained the origin of the weak ferromagnetism
in some of the crystallographic phases despite the strong
antiferromagnetic isotropic exchange. Recently, the norm of
the DM vector was determined in SrCu,(BOs), through
electron paramagnetic resonance (EPR) spectroscopy.'''? On
the basis of the perturbational approach outlined by Moriya,
there have been many attempts to rationalize the anisotropic
interaction between two Cu®' ions.”>”!'® A systematic
overview has recently been published by Moskvin.'’

Until now, the ab initio study of magnetic anisotropy has
been mainly limited to the monometallic complexes or the
symmetric terms in polynuclear systems. One of the first
anisotropy calculations was performed on a titanium bimetal-
lic complex, combining the complete active space self-
consistent field (CASSCF) approach, multireference pertur-
bation theory (MRPT), and effective nuclear charge SOC
calculations.'® The implementation of SOC in the NRLMOL
code'??° triggered a major breakthrough in the application
of density functional theory (DFT) to the magnetic anisotropy

10.1021/ct100329n  © 2010 American Chemical Society
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in polymetallic SMMs.?' 27 An ab initio treatment of SSC was presented by Vahtras et al.*® Another important contribution
was made by Neese with the implementation of SOC and SSC in the ORCA code.?’ This implementation not only allows the
study of anisotropy with DFT but also paved the way for the use of wave-function-based methodologies.’* *? The latter
methods have been applied successfully to several monometallic transition metal complexes and organic systems.*> >* A
similar treatment of SOC was implemented in the MOLCAS code®® based on the restricted active space state interaction
spin—orbit (RASSI-SO) scheme,***! which was used to study ZFS phenomena in transition metal complexes.** *° Finally,
we mention the work of Gilka et al. on SSC°° and the ZFS calculations on organic molecules by Sugisaki and co-workers.

The binuclear copper(Il) acetate complex described by Bleaney and Bowers’? is one of the first examples of a polynuclear
system with anisotropic interactions and has been the subject of several studies.’* > Since this complex presents a center of
inversion, only symmetric interactions are allowed, and we will treat the anisotropy of this system in a separate study.
Antisymmetric interactions in binuclear complexes are less common and difficult to probe by EPR spectroscopy.’® Some
synthetic complexes were proposed by Kahn to present antisymmetric interactions,’” but the only clear evidence of DM
interaction in a bimetallic complex was found in a diferric complex and has required the use of Mossbauer spectroscopy.’®
Important antisymmetric interactions have also been evidenced in trimetallic copper(Il) complexes by both magnetic circular
dichroism (MCD) and EPR spectroscopies.’’

Recently, a new extraction method of anisotropic parameters has been proposed*” that is based on effective Hamiltonian
theory.®*®! The method establishes a simple procedure to determine the ZFS parameters and the magnetic anisotropic axes.
In addition, the method can be used to validate existing model Hamiltonians to describe the magnetic anisotropy. The standard
multispin Hamiltonian for centrosymmetric bimetallic systems was found to be incomplete, lacking a non-negligible biquadratic
anisotropic interaction term.*®

To add a new aspect to the understanding of the anisotropic interactions between two Cu(Il) ions bridged by a
diamagnetic bridge, we apply the new extraction method to a Cu(Il) model complex that mimics the Cu—O—Cu units
present in copper oxides and that is also relevant to molecular polynuclear Cu(Il) complexes. The application of ab
initio calculations and subsequent mapping on a model Hamiltonian through effective Hamiltonian theory allows us to
extract all parameters of the general spin Hamiltonian written in eq 1 and to investigate the mechanism of anisotropy
without any assumption. For example, we do not assume that the anisotropy solely arises from the interaction of the
fundamental singlet and triplet with excited states. In addition, we determine the relative importance of all of the terms
that were described by Moskvin by means of a decomposition of the ab initio wave function and study the effect on the
anisotropy of the bending of the central Cu—O—Cu bond ¢, and the twisting of the two CuO4 planes defined as the
dihedral angle %, shown in Figure 1.

2. Theory and Methodology

2.1. Spin Hamiltonian in Copper(II) Bimetallic Systems.

We start our analysis with the derivation of the 4 x 4 interaction matrix spanned by the singlet and triplet IS,Ms) determinants.
For convenience, we rewrite eq 1 by grouping the symmetric and antisymmetric anisotropic interaction in a single second-
order tensor T:

A A

A=1JS,-S,+ 8,75, 2)

a

,Ms,) basis taking into account all
possible interactions in an arbitrary axis frame. My, and Mg, are the Mg components of the local doublets on centers a and b,
respectively.

The easiest way to proceed is to build the model interaction matrix in the uncoupled IMg

i 11 _11 I _1 11
mod 27 2 2’2 20 2 2’2
1 1 1 1 . 1 . 1 .
~35 1V + Ty —3(Ts + iTy) =3T3 + iTy) AT = Ty + Ty, + T))
11 1 . 1 1 1 . 1 .
T §| _Z(TSI — iT3) _Z(J + Tyy) EJ + Z[Tn + Ty, + Ty — Tyl Z(Tm + iTy)
1 1 1 . 1 1 . 1 1 .
2 2 _Z(Tm — iTy) EJ + Z[Tll + 1, — i1y — Tl _Z(J +T3) Z(T31 + iT3)
11 1 . 1 . 1 . 1
<§’§| Z[Tll — Ty — T, + Tyl Z(T13 — iTy) Z(T31 — iT3) Z(J + Ty)

In a second step, the model matrix is transformed to the coupled IS,Ms) basis for a more straightforward understanding of
the interactions:
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H, o 1,—1) I1,0)
ad,—11 l(J-I—T) —QT + T, +iT,, + T
s 4 33 8[ 13 3 T i(Ty 3]

\2 1

(1,0l —g (T3 + Ty = il + Tyl VT Tt Ty =Ty
1 . \2

(L1l Z[Tn =Ty — T, + Tyl ?[TIS + T — i(Ty; + T3yl
2 f

(0,01 —§[T13 — 15 — i(Ty; — T3yl Z(le -7

The symmetric and antisymmetric contributions (D;; and
dj, respectively) can be separated as follows:

D, =T,

_ 1
Dy =Dy =5(T; +

d. =

y

7 3

1
_dji - E(Tij - Tji)

From this, it is clear that the antisymmetric interactions
arise from the (S,MslH 04lS’,M5) matrix elements and cause
a direct coupling between the singlet and triplet states, which
is absent in the case of symmetric interactions only. Finally,
we mention that the antisymmetric second order tensor d
can be reduced to a pseudovector with the following

components:

dx = d23 dy = _dl3

d,=d,

“)

Z

2.2. Description of the Models and Computational
Information. The model complex used in the calculations
consists of a Cu—O—Cu central part using H,O ligands to
complete the coordination sphere of the copper ions. The
Cu—O distances have been fixed to 2.00 A and the O—H
distances fixed to 0.96 10%, while the ¥, and ¥, angles are
susceptible to changes. The symmetry rules for the appear-
ance of both symmetric and antisymmetric interactions are
well-known and reported in the literature.®> In the case where
% = ¥, = 0°, the complex has an inversion center, and
hence, only symmetric anisotropic interactions are allowed.
When 9 is changed, the symmetry is lowered from D, to
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I, 1) 10, 0)
I . 7 |
Z[T” Tyt i, + T _§[T|3 =Ty + Ty = T3yl
\2 . i
§[T13 + Ty + i(Ty; + Tyl 4(T12 T,)
1 \2 .
Z(J + T _?[TIS — Ty — Ty — Tyl
V2 j Ysr—1, -1, -1
_?[TB = T3 + i(Ty; — T3y)] 4( 11 22 33)

The SSC is an important mechanism to describe anisotropy
when the ZFS is on the order of a few cm™'. However, it
does not lead to antisymmetric interactions, as it cannot
directly couple triplet with singlet states.> As our main
objective of this study concerns the description of the DM
interaction, that is, the effective coupling between singlet
and triplet states, only the SOC has been considered. We
follow a two-step procedure implemented in Molcas 7 to
obtain accurate estimates of the exact N-electron wave
function that account for dynamic electron correlation and
spin—orbit interactions.

First, a number of spin—orbit free states is computed via
the CASSCF method using the Douglas—Kroll—Hess
Hamiltonian.®*® The active space contains all Cu-3d orbitals
and the corresponding 18 electrons. CASSCF wave functions
can be defined for all 25 singlet and triplet states of the d°—d’
manifold excluding the metal-to-metal charge transfer states.
Second, the spin—orbit coupling is introduced a posteriori
via the RASSI-SO method.***! This method uses the mean-
field approximation and the one-center approximation,®®
through the so-called atomic-mean field integrals (AMFT).®”%®
Dynamic correlation effects can be introduced by replacing
the diagonal elements of the spin—orbit matrix by CASPT2
energies®’? using the CAS(18,10)SCF wave function as a
reference. Following the conclusions of a previous work on
the magnetic coupling,”’ the IPEA shift of the CASTP2
zeroth-order Hamiltonian is set to zero.”>”* An imaginary
level shift of 0.2 hartree was applied to avoid the appearance
of intruder states in the perturbational treatment of dynamical
electron correlation.”* The following ANO-RCC basis set””

C,, and a DM vector appears along the z axis. The twist of
the CuQy planes (¥, = 0°) lowers the symmetry to D, and
induces a DM vector aligned along the x axis. However, the
interaction is strictly zero when the planes are orthogonal
(W = 0°, ¥, = 90°) and the molecule has D,; symmetry.
When both distortions are present, the point group symmetry
is C, with just a 2-fold rotation axis along the y axis. In this

was used: Cu (6s 5p 4d 2f), O (4s 3p 1d), and H (29).

In addition to the large CAS(18,10), we also performed
calculations with a minimal CAS(2,2) containing the mag-
netic orbitals only, in which we can just define the ground

state singlet and triplet states.

2.3. Extraction of Spin Hamiltonian Parameters. The

case, the DM vector lies in the xz plane.

Figure 1. Schematic representation of the distortions applied
to the model complex. Large spheres represent copper, and
smaller spheres are oxygens.

interaction matrix presented in section 2.1 contains 10
parameters. This number is reduced to seven when the
molecule is oriented is such a way that the magnetic axes
frame coincides with the Cartesian axes frame. Since the
model space is spanned by the four IMs) components of
the singlet and triplet, it is not possible to determine all the
parameters from the energy differences only. For the same
reason, it is also complicated to extract both symmetric and
antisymmetric interactions in the general case from an
experiment, for instance from EPR spectra.’® The required
extra information is contained in the wave function of the
spin—orbit states and is used to construct an effective
Hamiltonian® that allows us to extract all 10 parameters.
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The effective Hamiltonian is determined by projecting the
states that span the SO—SI space onto the model space. The
projections with the largest norm are orthonormalized by
the procedure of des Cloizeaux.®' and the matrix elements
of the effective Hamiltonian are calculated by applying the
following formula:

4
(@IAMD) = (D) Y WYELT D) (5)
k=1

where ®@;; are the four Mg components arising from the
singlet and triplet spanning the model space, WP, represents
the orthonormalized projections of the ab initio wave
functions, and Ej represents the corresponding energies. A
more comprehensive description of the application of the
effective Hamiltonian theory to extract anisotropy parameters
can be found in refs 47 and 48. The comparison of these
numerical matrix elements with those of the model Hamil-
tonian of section 2.1 leads to nine independent equations.
The axial and rhombic anisotropy parameters D and E are
usually defined in the magnetic axes frame as
D=D —l(D + D )=§D
2z 2 XX Yy 2 2z
: ©)
E = E(D’“ - D,)

The magnetic axes frame is obtained by diagonalizing the
symmetric ZFS tensor and by applying the standard conven-
tions of molecular magnetism that ID| > 3E > 0. While the
first convention (ID| > 3FE) fixes the attribution of the z
magnetic axis as the hard or easy axis of magnetization, the
second one fixes the attribution of the magnetic axes x and
y by imposing E to be positive. Then, the magnetic axes
frame is univocally defined.

The one-by-one comparison of the model and effective
Hamiltonian establishes a way to determine the ability of
the model Hamiltonian to describe the electronic interactions
of the exact Hamiltonian used to obtain the ab initio results.
This strategy revealed the existence of higher-order aniso-
tropic interactions in bimetallic complexes with § = 1
magnetic centers.*® Since these interactions cannot occur for
the Cu(Il) dimer under study, the only possible source of
discrepancy between the effective and model Hamiltonian
is the presence of orbital degeneracy. The model Hamiltonian
should imply both spin and orbital degrees of freedom in
the latter case.”® However, the coordination of the Cu(II)
ions leads to a nondegenerate ground state, and it is expected
that the standard multispin Hamiltonian of eq 1 accurately
accounts for the anisotropy.

3. Results and Discussion

3.1. Validation of the Spin Hamiltonian. To address the
validity of the standard spin Hamiltonian and to illustrate
the extraction procedure, one example will be presented in
certain detail. The numbers listed in this section are
calculated for the structure with ¥, = ¥, = 45°, but the
conclusions are also valid for the other structures discussed
afterward. All numbers presented in the text and equations
of this paragraph are given in cm™' unless specified
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otherwise. The RASSI-SO calculation is performed with a
SI space of 25 triplet and 25 singlet spin-free states. The
wave function of these states is obtained through a CAS(18/
10)SCF calculation. The diagonal matrix elements of the SI
matrix correspond to the CASSCF energies of the respective
states. The norm of the projection onto the model space of
the four low-lying spin—orbit states is approximately 98%.
Hence, the model space of the spin Hamiltonian is perfectly
adequate in this case. Then, the effective Hamiltonian matrix
is calculated applying eq 5:

Hg 11,—1y 11,0) 11,1y  10,0)
(1,—11 50.557 0.024 0.168  0.657i
(1,0l  0.024 49.781 —0.024 7.015i (1)
(1,11 0.168  0.024 50.557 —0.657i
0,01  —0.657i 7.015i 0.657i 1.006

The term-by-term comparison of this matrix with the
model matrix presented in section 2.1 fully validates the
model Hamiltonian. The effective Hamiltonian matrix does
not show any deviation with respect to the model matrix.
Hence, we can proceed to the extraction of the parameters
of the model Hamiltonian. The trace of the effective
Hamiltonian is arbitrary. As the aim of the model Hamilto-
nian is to reproduce the relative energies of the low-lying
magnetic spectrum, we set the energy of the lowest lying
eigenstate of the effective Hamiltonian to zero for conven-
ience. The symmetric ZFS tensor is considered traceless,
allowing the extraction of the 10 parameters of the model

Hamiltonian. The extracted J value is 49.3 cm™ !, and the
ZFS tensor is
~ —0.181 14.030 —0.068
T=|-14.030 —0.853 —1.858 )

—0.068 1.858 1.034

The symmetric and antisymmetric parts are then separated:

~ —0.181 0 —0.068
D= 0 —0.853 0 ©)]
—0.068 0 1.034

~ 0 14.030 0
d = [—14.030 0 —1.858 (10)
0 1.858 0

Since the C, rotation axis coincides with the Cartesian y axis,
D12, D3, and d,5 are zero.®> The antisymmetric_}second-order
ZFS tensor can be reduced to a pseudovector d = (—1.858,
0.0, 14.030) with a norm of 14.15 cm™ !, Since only its
orientation and norm can be determined, the DM vector is a
so-called pseudovector.

Next, we diagonalize the symmetric ZFS tensor to obtain
the magnetic anisotropy axes. Taking care of the usual
conventions for the definition of the x, y, and z magnetic
anisotropy axes, we obtain D,, = —0.184, D,, = —0.853,
and D,, = 1.038.

The magnetic y axis corresponds to the Cartesian y axis
(i.e., the C, symmetry axis), whereas the magnetic x and z
axes nearly coincide with the Cartesian axes. The DM vector
can be re-expressed in the magnetic axes frame in order to
define its orientation with respect to the anisotropy axes: d
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Table 1. Spin-Free and RASSI-SO J Parameter (cm™") for
Several Model Geometries?

J (spin-free) J (RASSI-SO)
91=0, CASSCF  CASPT2  CASSCF  CASPT2
0° 153 562 151 557
150 138 515 136 509
45° 50 236 49 232
75° -18 -19 17 -20
90° 20 -97 —21 -96

2 RASSI-SO calculations were performed with 25 triplet and 25
singlet spin-free states. The energies of the spin-free states are
calculated with CASSCF and CASPT2 using a CAS(18,10).

= (—1.070, 0.0, 14.120). As expected from symmetry
arguments, the DM vector is perpendicular to the C; axis, it
lies in the xz plane. It makes an angle of —4.3° with the
magnetic z axis.

In short, we have shown that the standard multispin
Hamiltonian is valid for the Cu(Il) dimer and that all ZFS
parameters and magnetic axis can be extracted from the ab
initio calculations in a straightforward manner. It remains
to be determined how robust these extracted parameters are
against the details of the computational scheme. Ideally, the
extracted parameters should not be too sensitive to these
degrees of freedom as is the case for the ZFS parameters in
the mono- and bimetallic complexes studied before.*”*®

3.2. Dynamic Correlation Effect on Spin Hamiltonian
Parameters. The isotropic magnetic coupling parameter J
can be extracted either at the spin-free level or after a RASSI-
SO calculation. As the magnetic triplet and singlet states
interact differently with the excited states, the RASSI-SO
extracted J value can be different from the spin-free
extraction. However, as can be seen in Table 1, this effect
is nearly negligible. As expected, J is large and antiferro-
magnetic for the undistorted complex (¢, = ¥, = 0) but
quickly decreases with the deformations. In fact, the main
effect comes from the %, deformation angle that induces the
change from a large antiferromagnetic coupling (J positive)
to a moderate ferromagnetic one (J negative). This result is
in agreement with the Goodenough—Kanamori—Anderson
rules.””~ 7 Dynamic correlation strongly affects the isotropic
coupling, as observed in many other studies present in the
literature.

The symmetric part of the ZFS tensor is determined by
the (1,MslHI1,Ms) and (1,M{HI1,M%) terms of the effective
Hamiltonian, while the antisymmetric part is determined by
the (S, MHIS’" ,Ms) and (S, M HIS’ M%) terms. Moreover, the
isotropic coupling can be extracted from the difference
between the barycenter of the (1,MglHI1,Ms) type terms and
the (0,0lﬂ 10,0) term of the effective Hamiltonian. Hence, all
different terms (symmetric, antisymmetric, and isotropic) are
rigorously separated in the extraction. The extracted sym-
metric part can then only be affected computationally by
changing the magnitude of mechanisms that affects directly
the symmetric terms, i.e., by changing the relative energies
of the excited spin—orbit free states with respect to the
magnetic triplet ground state. Hence, the effect of dynamic
correlation on the ZFS parameters D and E passes through
the correction of these relatives energies and not through
the correction of the J value. Table 2 shows how the dynamic
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Table 2. Symmetric Anisotropy Parameters D and E (in
cm™ ") for Several Model Geometries Extracted from the
RASSI-SO Calcualtions with 25 Triplet and 25 Singlet
Spin-Free States?

CASSCF CASPT2
H = D E D E
0° —0.81 0.04 —0.45 0.01
15° —1.52 0.02 —0.71 0.14
45° 1.56 0.33 —1.66 0.20
75° 3.38 0.10 —-3.27 0.57
90° 4.60 0.27 —4.10 1.22

2 The use of CAS(18,10)SCF energies for the spin-free states is
compared to the use of CASPT2 energies.

correlation strongly affects D and E. The most obvious
manifestation of this effect is the fact that the sign of D is
changed using CASPT2 energies in three cases. This change
of sign causes a reorientation of the magnetic axis frame in
which the roles of the magnetic x and z axes are interchanged.

It should be noted that the extracted values are small and
that the sign of D and the orientation of the magnetic axes
frame obtained with the computational approach outlined in
the previous section should be benchmarked against calcula-
tions at a higher level of theory. Probably, the RASSI-SO
matrix elements have to be calculated with wave functions
that account for dynamic correlation (i.e., beyond the
presently used CASSCF wave functions). Eventually, the
CASPT2 spin-free energies should also be replaced by
energies obtained with variational techniques as the differ-
ence dedicated CI method. Such a study is currently being
performed for the copper acetate molecule and will be the
subject of another publication.

We will now show that, contrary to the symmetric
interactions, the antisymmetric part of the anisotropy tensor
is robust against the inclusion of dynamic correlation. The
DM interaction can be split into two parts. The first one is
the direct coupling between the magnetic triplet and singlet
by spin—orbit interaction, the first-order contribution to the
DM interaction. Being an off-diagonal element of the model
Hamiltonian (see section 2.1), this interaction is hardly
affected by the inclusion of dynamic correlation. The second
part includes all mechanisms involving excited states, which
appear in second-order perturbation theory. The effect of
these mechanisms on the DM interaction depends directly
on the changes in the excitation energies due to dynamic
correlation.

Comparison of the results obtained with CAS(18,10)SCF
and CASPT?2 listed in Table 3 shows that the dynamic
correlation effect influences the norm and the orientation of
the DM vector in a modest way. The largest change in the
angle is observed for ¥, = 1, = 75°, for which ¢ changes
by ~25°. Although this may indicate a rather drastic change
at first sight, the effect is not so large if we compare the d,
and d. components of the DM vector with and without taking
into account the dynamic correlation. Using CASSCF
energies, d. and d, are —4.8 and 1.4 cm™', respectively.
These values change to —6.7 and —0.8 cm™ ' when electron
correlation is taken into account by CASPT2. Hence, by no
means do we observe the drastic changes that occur for the
symmetric anisotropy, and we conclude that the effect of
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Table 3. Norm of the DM Vector Idl (in cm~") and Angle ¢
(in deg) of the DM Vector with the Cartesian z Axis for
Several Model Geometries?®

CAS(2,2)/small CAS(18,10)/large

RASSI-SO RASSI-SO CASPT2

H = lal @ lal ® al @
0° 0.00 0.0 0.00 0.0 0.00 0.0
15° 8.35 -0.7 6.98 0.7 9.77 17.2
45° 17.58 —-8.5 14.15 -7.5 17.75 7.4
75° 7.78 —-171 4.97 —-16.5 6.76 6.6
90° 7.58 —-16.5 7.32 —15.3 6.75 —28.3

2The small RASSI-SO space is spanned by the fundamental
singlet and triplet states. The large RASSI-SO space contains 25
triplet and 25 singlet spin-free states. The energies of the spin-free
states are calculated with CAS(2,2)SCF, CAS(18,10)SCF, and
CASPT2.

dynamic correlation is not essential for a semiquantitative
description of the DM vector in the Cu—O—Cu system.

To separate the first-order mechanisms involving the
singlet and triplet ground states from the second-order
mechanisms involving excited states, we performed ad-
ditional CASSCF/RASSI-SO calculations in which the effect
of excited states is completely eliminated. This can be
achieved by reducing the active space to two orbitals with
two electrons and building the RASSI-SO matrix in the space
spanned by the four IMs) components of the singlet and triplet
ground states. Table 3 compares the results obtained with
the small RASSI-SO space using the CAS(2,2)SCF wave
functions and energies to those obtained with the large CAS
and large RASSI-SO space used so far. Again, we observe
that the essentials of the DM interaction are maintained. This
means that the leading mechanism for antisymmetric ani-
sotropy in Cu—O—Cu-based systems is the direct coupling
between the singlet and triplet ground states and that the
second-order processes involving excited N-electron states
have a smaller effect. In the following, we will apply
CAS(2,2)SCF calculations followed by RASSI-SO calcula-
tions involving only the singlet and triplet ground states to
study in more detail the effect of geometrical deformations
and analyze the mechanism of the DM interaction.

3.3. Magneto-Structural Correlations. To complete the
study of the geometrical distortion, we calculated the norm
of the DM vector as a function of the Cu—O—Cu bending
(¥1) and the twist angle of the two CuOj, planes (1,). The
results are shown in Figure 2. The 1%, deformation leads to
the C», point group symmetry with the DM vector oriented
along the Cartesian z axis. As can be seen in Figure 2, this
deformation creates a large DM interaction with a maximum
of 14.8 cm™' for ©¥; = 40°. The DM vector is obviously
zero for 0° and 3.6 cm ™! for the other extreme when ¥, =
90°.

The start and end points of the twist deformation (¢, =
0° and 90°) do not show any DM interaction due to symmetry
reasons.®? In between, there is a small DM vector along the
C, axis that connects the two magnetic centers. However,
according to Figure 2, this deformation on its own does not
create any significant antisymmetric anisotropy. The com-
bination of the two deformations leads to an important
synergistic effect. The highest norm of the DM vector is 25.5
cm ! and occurs for 9 = 45° and 9, = 90°.
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Figure 2. Norm of the DM vector (in cm™") as function of
the ¥4 and 9, deformation angles (in deg) obtained at the
CAS(2/2)/RASSI-SO level.

The observed behavior is apparently not due to one single,
simple mechanism but to the sum of several, complementary
or opposing, mechanisms. In the next section, we will
describe the origin of the dominant mechanisms that lead to
DM interaction and relate the findings to the shape of the
surface shown in Figure 2.

3.4. Description of the Dominant Mechanisms. The
results described in the previous section strongly suggest that
the dominant mechanisms leading to DM interactions occur
at the first order of perturbation, that is, a direct coupling
between the magnetic singlet and triplet spin-free states via
spin—orbit coupling. Some of these mechanisms have been
described in the literature,'” but here we complete the
analysis and classify the different mechanisms by increasing
importance.

The CASSCF wave functions of the triplet and singlet state
are

11,1) = 10,
11,0) = [Ipd,) — o d )12
IL—1) = 155, an

10,0) = Alpp) — ulp,9,)

in which all the doubly occupied orbitals are omitted for
clarity. The symmetric and antisymmetric molecular orbitals
¢s and ¢, are mainly localized on the Cu atoms but have
important tails on the bridging oxygen, as shown in Figure
3. The composition of the CASSCF magnetic orbitals is as
follows:

¢, = X, cl3d) £ 3d0] + ¢.2p, + ...

(12)

¢, = 2,3 M) F 3dm)] + e 2p, + ...

where 3d;(1,r) is one of the five atomic 3d orbitals centered
on the left or right Cu ion, and 2p,, stand for the atomic
2p., orbitals on the bridging oxygen. In none of the
distortions considered here does the O-2p, orbital contribute
to the magnetic orbitals. In addition, all of the other
contributions to the magnetic orbitals are either very small
or irrelevant for the anisotropy and have been removed for
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Figure 3. Symmetric (¢s) and antisymmetric (¢,) magnetic orbitals for the #; = 40°, ¥, = 0° structure.

Table 4. List of Different Classes of Matrix Elements in the Direct Coupling after the Substitution of eqs 11 and 12 in

(1,011, $,10,0)2

class electr. conf. example matrix element number
d—d (neutral) 3d°—2p®—3d° §1(3dxe_ye(l)3<:ji(r)IZZ(I)-§z(/)I3dxy(/)3§,(n) 18/18
d—d (ionic) 3d8—2p®—3d'° £o(Bdlxe—2(N3AAN(1) + S/)I3cx (3L N) 12/18
p—d (copper) 3d°—2p°5—3d'° £1(3dxe—2(D2B]1 A1) - SN 13 ) 2P 24/24
p—d (oxygen) 3d°—2p®—3d'° £x(8di()2pyllz+ 8,13d(/)2py) 24/24
p—p 3d'°—2p*—3d'° Ca(2px2Pyllz* 8712px2Px) 2/2

ad{l) indicates a 3d orbital on the left Cu center occupied with a 3 electron. An example matrix element is given for each class together
with the total number of triplet/singlet terms. &y and &, are the atomic spin—orbit parameters of Cu®* and Cu®", respectively. &3 and &4 are

the spin—orbit parameters of O~ and O, respectively.

simplicity. The resulting orbitals are renormalized before
further processing.

The second and most laborious step is the substitution of
eqs 11 and 12 in the expression of the coupling between
singlet and triplet through the spin—orbit operator. The
derivation of the complete analytical expressions for all of
the points considered in the magneto-structural correlations
derived in the previous section would require consideration
of the four spin—orbit states and all 12 atomic orbital
contributions (2p;, 2p,, and the 10 3d orbitals) to ¢ and @,.
This would obviously lead to an overwhelming number of
terms. Therefore, it is necessary to restrict the analysis to
some special points for which the dominant mechanisms can
be derived, which are then extrapolated to the other cases.

The first case to be analyzed is the structure with ¢, = 0
and 9, = 0. Since, the DM vector is oriented along the z
axis, only the (I,OIiZ-fzIO,O> coupling has to be considered.
For symmetry reasons, the 3d,. and 3d,. atomic orbitals do
not contribute to the magnetic orbitals. Moreover, the I3,
operator does not couple the 3d2 to the 3d,, or 3d,2-,2 orbital.
These simplifications lead to a reasonable number of terms
that can be classified in five different types. Table 4 gives
an example of each class and enumerates the total number
of terms in each class.

If we now focus on the structure with ¢ = 40° and ¥, =
0, the A and u CI coefficients in eq 11 are 0.7275 and 0.6861,
respectively.

Using the numerical expression of the optimized orbitals
of the triplet (¢, ¢,) and singlet (¢, ¢3) orbitals given in
the Supporting Information, the DM interaction can be
decomposed in the five classes of interactions mentioned
before. The results are collected in Table 5. In the first
place, it should be noticed that the decomposition leads
to a similar norm of the DM vector as the complete
RASSI-SO calculation, validating the analysis. The small

Table 5. Contributions to the d, Component of the DM
Vector (in cm™") of the Different Types of Mechanisms at
the CASSCF Level for the (% = 40°,90°;9, = 0°)
Structures

class ¥y = 40° ¥ = 90°
d—d (neutral) 13.1 0.0
d—d (ionic) -0.2 0.0
p—d (copper) 0.1 0.0
p—d (oxygen) 0.4 1.2
p—p -0.1 0.0
total 13.3 1.2
RASSI-SO 14.8 3.6

differences arise from the use of atomic spin—orbit
parameters and the simplification of the magnetic orbitals
to the essential atomic orbitals contribution.

The largest contribution to the DM vector arises from
the d—d (neutral) interactions. This term reaches a
maximum when the contribution of the 3d,2-,2 and 3d,,
orbitals to ¢, and ¢, is largest. This happens for the
structure with 9, = 45°. Nevertheless, the existence of
other mechanisms and the difference between A and u
displaces the maximum to slightly smaller angles. The
d—d (ionic) contribution to the DM is small in this
geometry and expected to be small in all cases. The
contribution of these types of interactions may increase
for smaller bending angles for which the isotropic coupling
is stronger, and hence, the weight of the ionic configura-
tions is larger. However, in these cases, the contribution
of the 3d,, orbital to the magnetic orbital is reduced,
leading to a counterbalancing effect.

The p—d (copper) and p—d (oxygen) contributions are
negligible in this geometry due to a numerical cancellation
of various contributions. This is, however, not always the
case, as will become clear for the structure with ¢ =
90°. Finally, the contribution of the O-2p* configuration
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to the wave function has such a small weight that the
importance of this mechanism is negligible.

At 91 = 90°, only the 3d,, and 3d2 orbitals have nonzero
copper contributions to the magnetic orbitals. Since these
orbitals are not coupled by the [.+5. operator, the contribu-
tions of the d—d and p—d (copper) mechanisms are strictly
zero for this geometry. The dominating effect is a p—d
(oxygen) mechanism, the spin—orbit coupling on the
oxygen atom in the presence of a hole on one of the copper
atoms. Again, the weight of the O-2p* configuration is
small, and as a consequence the contribution to the DM
vector of the p—p mechanism is nearly zero.

Once we change 1, to values different from zero, the
et operators come into play, and the coupling between
all 3d atomic orbitals should be considered. This leads to
a significant increase of the norm of the DM vector upon
the increase of the twist angle of the two CuOy planes in
the model complex. A numerical analysis of the mecha-
nisms is simply too elaborate and would not really offer
new insights. The main contribution to the DM interaction
arises from the d—d (neutral) mechanism with smaller
contributions from the other mechanisms. Close to ¢, =
90°, the p—d (oxygen) term dominates.

4. Conclusions

The multispin Hamiltonian of the d°—d® configuration
contains 10 well-defined parameters. These parameters
have been extracted using the effective Hamiltonian in
combination with the CASSCF/CASPT2/RASSI-SO meth-
odology. The comparison of the numerical effective
Hamiltonian with the model Hamiltonian shows that the
latter one accurately describes all of the magnetic interac-
tions contained in the exact electronic Hamiltonian.

The symmetric anisotropy terms of the multispin
Hamiltonian are small. The sign of the axial anisotropy
and the orientation of the magnetic axis frame cannot be
determined with the applied computational strategy, it
being too dependent on the details of the calculation. A
more sophisticated computational scheme is compulsory
to benchmark the computations for these types of interac-
tions. However, the antisymmetric anisotropic (or DM)
interactions appear more robust and can be studied with
the outlined strategy. Our conclusions can be summarized
in three main points.

In the first place, the DM interaction is dominated at
the first order of perturbation by the direct coupling
between the magnetic singlet and triplet via spin—orbit
coupling. This leads to an important simplification of the
computational treatment, namely, the reduction of the SI
space to the magnetic states and the use of the minimal
active space.

Second, the main deformations of cuprate-like materials
have been studied, that is, the Cu—O—Cu bending angle
and the twist angle between the copper planes. The
symme